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Abstract. Despite the prevalence and significance of walk-ins in healthcare, we know
relatively little about how to plan and manage the daily operations of a healthcare facility
that accepts both scheduled and walk-in patients. In this paper, we take a data-analytics
approach and develop an optimization model to determine the optimal appointment
schedule in the presence of potential walk-ins. Our model is the first known approach that
can jointly handle general walk-in processes and heterogeneous, time-dependent no-show
behaviors. We demonstrate that, with walk-ins, the optimal schedules are fundamentally
different from those without. Our numerical study reveals that walk-ins introduce a new
source of uncertainties to the system and cannot be viewed as a simple solution to com-
pensate for patient no-shows. Scheduling, however, is an effectiveway to counter some of the
negative impact from uncertain patient behaviors. Using data from practice, we predict a
significant cost reduction (42%–73% on average) if the providerswere to switch from current
practice (which tends to overlook walk-ins in planning) to our proposed schedules. Although
our work is motivated by healthcare, our models and insights can also be applied to general
appointment-based services with walk-ins.
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1. Introduction
Making an appointment is a common way for cus-
tomers to get service in many industries. Walk-in
customers without appointments (or “walk-ins” for
short), however, are often welcome and accepted as
well. Providing service to walk-ins benefits a firm in a
range of ways, such as increasing revenues, enlarging
the customer pool, and building a good business image.
To name a few examples, banks accept walk-ins for
more business; hotels seldom reject requests from walk-
ins if rooms are still available; restaurants rely on walk-
ins to build the word of mouth; beauty salons always
try to make walk-ins become their regular clients; tech
support accepts walk-ins to attract more customers. As
walk-ins arrive spontaneously without advance notice,
they may interrupt the firm’s daily operations, in par-
ticular, the service of scheduled customers who have
set specific arrival times for services.

One industry that often sees the conflict between
serving walk-ins and scheduled customers is healthcare.
In the outpatient care setting, walk-ins without ap-
pointments are usually accepted and constitute a major
stream of the customers. In the United States, walk-ins

can range from 10% to 60% of the total daily visits to
primary care practices; see, for example, Moore et al.
(2001) and Cayirli et al. (2008). In the United King-
dom, 63% of genitourinary medicine clinics operate
both appointment-based and walk-in services (Djuretic
et al. 2001).
Despite the prevalence and significance of walk-ins,

we know relatively little about how to plan and manage
daily operations of a healthcare facility in the presence
of walk-ins. Current practice of outpatient care deals
with walk-ins by setting up daily schedule templates,
which specify when to schedule an appointment and
when, if ever, to intentionally leave open in anticipa-
tion for walk-ins. However, there is a lack of scientific
understanding on how to set up such a daily template.
Most extant literature develops models and insights
that can only be applied to an environment free of walk-
ins; managing a practice that accepts walk-ins requires
fundamentally different tools and guidelines. Without
careful planning for walk-ins, daily service operations
may be interrupted, resulting in long patient waits,
provider overtime work, and, ultimately, poor service
quality.

1
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The negative and potentially serious impact on the
organization due to not carefully considering walk-
ins becomes evident when we interact and collaborate
with two large outpatient care systems in New York
City (NYC). The first one is a community health center
that provides comprehensive medical and dental care
to the Central Harlem and Washington Heights areas.
Being a Federally Qualified Health Center (FQHC), this
facility has to serve all patients regardless of their abil-
ity to pay; as a result, more than 15% of the total patient
visits to this center are walk-ins (see detailed data in
Section 3). However, the administrative team of this
center has informed us that walk-ins are “believed to
be the main reason for long patient waits.” The other
organization we interact with is a large community
healthcare network, made up of 11 FQHCs located
acrossNYC. One physician told us that, “I know there
are always many walk-ins at 10 a.m., but I can’t take
them. I have appointments [at that time]” (Berman
2016). Undoubtedly, walk-ins have presented a signifi-
cant challenge in running both organizations, and how to
deliver high-quality care services in the presence of these
uncertain walk-ins becomes a critical operational issue.

In this paper, we take a data-analytics approach
and develop decision models to inform the design of
daily schedule templates in outpatient care practices
where both scheduled and walk-in patients are ac-
cepted. Using a large data set obtained from our first
collaborating organization, we find that patient walk-in
processes and patterns vary across providers, even in
one practice. More importantly, walk-ins may not ar-
rive according to the classic (time-inhomogeneous)
Poisson process, as often found in the previous literature
(Kim and Whitt 2014). In particular, the “zero-event”
probability—that is, the chance that no walk-ins ar-
rive in a short time period—may be too large for the
Poisson distribution. Motivated by these empirical
findings, we develop optimization models that can
accommodate general arrival patterns of walk-ins.
Specifically, we consider a generic clinic session, with
T> 0 appointment slots, for a single provider. Through-
out the session, a random number of walk-ins may
arrive for services according to some arrival process.
We are concerned with determining a right number of
appointments to schedule and scheduling them to the
T slots simultaneously, in anticipation for potential walk-
ins that may arrive over time. The objective is to minimize
the expected total cost due to patient waiting, provider
idling, and overtime.

Another important factor to consider when designing
schedule templates in healthcare is patient no-show
behavior. Patient no-shows occur when patients miss
their booked appointments without early notice or
cancellation. Patient no-show rate can range from 1%
to 60% depending on practice and patient profiles,
and not accounting for patient no-shows may lead to

significant operational inefficiency; see Cayirli and
Veral (2003), Kopach et al. (2007), Gupta and Denton
(2008), and Liu (2016) for detailed discussions on the
phenomenon and impact of patient no-shows. Our
models and solution approaches can accommodate
general patient no-show behaviors as well.
Our contributions in this work can be summarized

as follows. To the best of our knowledge, we are among
the first to develop analytical optimization models to
determine the optimal appointment schedule in the
presence of potential walk-ins. Our model is the first
knownapproach that can jointly handle generalwalk-in
processes and heterogeneous, time-dependent patient
no-show behaviors. Because of this flexibility, our ap-
proach can incorporate almost any finding on these pa-
tient behaviors based on empirical data, thus presenting
great value for practical use. In particular, we show
that the objective function in our optimizationmodel is
multimodular in the decision variables when no-show
probabilities are homogeneous and time-independent;
this elegant property guarantees that a local search yields
a global optimum. When no-show probabilities become
heterogeneous and time-dependent, we propose an
innovative variable transformation to reformulate the
original challenging two-stage nonlinear optimization
model into a stochastic linear programming model with
simple structures, which can be directly solved by off-
the-shelf optimization packages. In addition, this refor-
mulation can leverage themultimodularity of the objective
function, if this property holds, to further accelerate the
solution process. To our knowledge, we are the first to
propose such a reformulation, which may have broader
applications in other contexts of optimization.
In addition to the above, our empirical investiga-

tion of walk-in patients also contributes to the rela-
tively scant empirical literature on customer arrivals
by revealing new temporal patterns and models for
customer demand. Via extensive numerical experi-
ments, we demonstrate that, with walk-ins, the op-
timal schedules are fundamentally different from
those identified in the previous literature, which does
not consider walk-ins. Our numerical study also re-
veals that walk-ins introduce a new source of uncertainty
to the system and cannot be viewed as a solution to
compensate for patient no-shows. Scheduling, how-
ever, is an effectiveway to counter someof the negative
impact from uncertain patient behaviors. We show
that adopting the schedules suggested by our models,
which explicitly take walk-ins into account, can lead to
a significant efficiency improvement in practice. Full
benefit of our model can be realized with sufficient de-
mand; even when demand is insufficient, our model
can still be applied in an online fashion and deliver
excellent performances.
The remainder of this paper is organized as fol-

lows. Section 2 briefly reviews the relevant literature.
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Section 3 presents an exploratory analysis of walk-in
patterns using our data from practice. Section 4 de-
velops and analyzes our basic scheduling model with
random walk-ins. In Section 5, we incorporate patient
no-show behaviors into the basic model and present
our reformulation approach. We discuss our numerical
study and managerial insights in Section 6. Section 7
provides concluding remarks. All proofs of the analytical
results can be found in the online appendix.

2. Literature Review
Ourwork is closely related to the (outpatient) appointment-
scheduling literature that investigates how to schedule
patients over time in a day. Extensive work has been
focused on developing mathematical programming
models to optimize the tradeoff between patient in-
clinic waiting and provider utilization. Two types of
decision variables have been considered. The first
type of decision scenario is concerned with the exact
appointment time for each patient (decision variables are
continuous); see, for example, Denton and Gupta (2003),
Hassin and Mendel (2008), Kong et al. (2013), Chen
and Robinson (2014), and Jiang et al. (2017). The sec-
ond type of decision scenario, like ours, divides a day
into a certain number of appointment slots and de-
termines the number of patients scheduled to each
slot (decision variables are integers); see, for example,
Kaandorp andKoole (2007), Robinson and Chen (2010),
LaGanga and Lawrence (2012), Zacharias and Pinedo
(2014), and Zacharias and Pinedo (2017). These pre-
vious studies have considered a variety of uncertainties
in practice that may affect the design of appointment
templates (such as patient no-shows and random ser-
vice times). However, none of the abovework explicitly
considers walk-ins, an important phenomenon in health-
care, as discussed earlier. Besides the analytical work
above, simulation-basedmodels have been used to study
appointment-scheduling decisions, and some consider
the impact of walk-ins; see, for example, Cayirli and
Gunes (2014). Our work complements and advances
this prior literature by proposing new analytical models
and solution approaches to optimize the appointment
schedule in anticipation for random walk-ins.

Next, we draw close attention to a few articles that
are most related to our work. All these studies, including
ours, treat the number of patients scheduled to each
appointment slot as the decision variable. In Kaandorp
and Koole (2007), patients’ no-show probabilities are
homogeneous, and provider service times are exponen-
tially distributed. They develop a local search procedure
for the optimal schedule. Different from Kaandorp and
Koole (2007), Robinson andChen (2010) and Zacharias
and Pinedo (2014) both assume deterministic service
times for providers. Under this assumption, Robinson
and Chen (2010) identify an important property—the
“No Hole” property—for the optimal schedule (more

on this below). Zacharias and Pinedo (2014) consider
both offline and online scheduling, and develop struc-
tural properties and effective heuristics for the optimal
schedule. Zacharias and Pinedo (2017) extend their
earlier work to a multiserver setting.
Our work departs from the four studies above in

several important ways. First, we explicitly take into
account potential walk-ins during the day, and we
allow the walk-in process to be general. We demonstrate
that the resulting optimization problem is much more
complicated, and those elegant properties that hold
without walk-ins (e.g., the No Hole property) do not
hold anymore when walk-ins are accepted. Second, the
previous literature solves for the optimal schedule,
either using local search or via enumeration (after char-
acterizing the structural results). We are, however, able
to provide the first two-stage stochastic linear pro-
gramming formulation for the appointment-scheduling
problem with both walk-ins and no-shows present. This
formulation not only is amenable to many standard
mixed-integer programming solvers, but also has a
special structure, which allows us to develop a unified
solution approach proven to be highly effective in nu-
merical experiments. Third, our modeling framework
and solution approaches are very flexible and can also
accommodate heterogeneous, time-dependent patient
no-show behaviors and random service times (of a
certain distribution).
An important recent work by Zacharias and Yunes

(2019) is studying a similar problem as ours. They aim
to investigate the multimodularity of the objective func-
tion in a general setting and design a fast local search
procedure, whereas we focus on reformulating a chal-
lenging problem to a tractable mathematical program.
These two studies complement each other by investi-
gating a similar, challenging problem from fundamen-
tally different angles.
Our work is also connected to, but differs significantly

from, the literature in service operations management
that dealswithwalk-in customers. For instance, Bertsimas
and Shioda (2003) develop methods to dynamically
decide when, if at all, to seat an incoming party during
the day of operations of a restaurant. This is an online
decision problem in the restaurant industry, whereas
our work focuses on an offline decision to determine
the best schedule in a doctor’s office. Alexandrov and
Lariviere (2012) develop a game-theoretic model to
study whether reservations are recommended for res-
taurants where walk-in customers are often allowed.
Bitran and Gilbert (1996) and Gans and Savin (2007)
study the reservation management problem with un-
certain walk-in customers for hotels and rental firms,
respectively. The last three studies focus on capacity-
level decisions (e.g., how much capacity to reserve for
walk-ins), rather than within-day operations investi-
gated by us.
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3. Exploratory Study of Walk-in
Arrival Patterns

Although previous literature has a rich documenta-
tion on the volume of walk-ins [see, e.g., Moore et al.
(2001) andCayirli et al. (2008)], relatively little is known
about the temporal pattern of walk-in arrivals. In this
section, we use a data set obtained from a large com-
munity health center located in NYC to conduct an
exploratory study on the temporal pattern of walk-ins.
This simple study is based on data from a single orga-
nization and is by no means comprehensive; its main
purpose is to motivate our analytical appointment-
scheduling model that follows.

3.1. Data
The data were extracted from the electronic medical-
record system of our collaborating health center. This
center provides comprehensive medical and dental
care to the local community and serves more than
25,000 patient visits every year. The data set spans
3 years ranging from January 2011 to January 2014,
and contains 67,847 valid records of patient visits. In
these records, more than 15% (10,402) are walk-ins.
There are 38 providers (including physicians and nurse
practitioners) in the data set; some providers have
more than 50% of the patients they see as walk-ins.
In this center, walk-ins are accepted throughout the
office hours. When analyzing these data, we focus on
three specialties, Nurse Practitioner, Internal Medicine,
and Pediatrics, which serve more than 80% of the walk-
in visits (with 5,076, 2,669, and 1,128 records, respec-
tively). Then, we choose six providers who have the
most walk-in records (four Nurse Practitioners, one
Internist, and one Pediatrician) for analysis.

3.2. Statistical Analysis Framework
To study the arrival patterns of walk-ins, we adopt a
Poisson regression framework to model the number
of walk-ins in each hour. Specifically, for each of the
six providers, we estimate and compare three regression
models below (from simple to more comprehensive). In
these models, walk-in arrivals in different time slots are
assumed independent. This assumption is supported
by our empirical observation that, for each of the six
providers we study, the correlations of walk-in counts
in different time slots are very weak (with fairly small
correlation coefficients) and in most cases not statisti-
cally significant (see Section A in the online appendix
for detailed data presentation).

Model 1 is a classic Poisson regressionmodel,whereYt,
the number of walk-ins in hour t, has a Poisson dis-
tribution with mean λt, which depends on the hour t.
That is,

Pr(Yt � k) � λk
t e

−λt

k!
, k � 0, 1, 2, . . . . (1)

Using the logarithm as the canonical link function,
Model 1 is specified as follows:

log(λt) � γ1 + γ2x2 + · · · + γTxT, (Model 1)

where xi is a dummy variable, which takes value 1 if
t � i and value 0 otherwise, i � 2, 3, . . . ,T (note that we
do not have x1 in Model 1, because hour 1 is the base
category whose effect is captured by γ1). In Model 1,
γt’s are the statistical parameters we will estimate,
and the hourly arrival rates can then be estimated as
λ1 � eγ1 and λt � eγ1+γt for t> 1.
A close look at our data reveals that for some of the

providers, there are an excessive number of zeros in
hourly arrivals, which may make Model 1 not a good
fit. To address this problem of excess zeros, we con-
sider zero-inflated Poisson regression models (Lambert
1992), which first determine whether there are zero
events or any events, and then use a Poisson distri-
bution to determine the number of events, if there are
any. That is, the number of walk-ins in hour t is
modeled as follows:

Pr(Yt � k) �
a + (1 − a)e−λt if k � 0,

(1 − a)λ
k
t e

−λt

k! if k> 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

where a is the zero-event probability and λt is the
hourly arrival rate. Using the canonical link functions,
the statistical specification of the above model can be
written as follows:

log
a

1 − a

( )
� b and log(λt) � γ1 + γ2x2 + · · · + γTxT,

(Model 2)

where xi is defined as in Model 1. Under Model 2,
a � 1 − 1/(eb + 1), λ1 � eγ1 and λt � eγ1+γt for t> 1.
Model 2 assumes a constant zero probability a.

A more comprehensive model, however, is to specify
that the zero probability also depends on time t. That is,
the number of walk-ins in hour t is modeled as below:

Pr(Yt � k) �
at + (1 − at)e−λt if k � 0,

(1 − at)λ
k
t e

−λt

k!
if k> 0,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (3)

where at is the zero-event probability in hour t. Its
corresponding statistical specification is

log
at

1 − at

( )
� b1 + b2x2 + · · · + bTxT and

log(λt) � γ1 + γ2x2 + · · · + γTxT, (Model 3)

where xi is defined as in Model 1. Under Model 3, a1�
1− 1/(eb1+1) andat�1−1/(eb1+bt+1) for t>1;λ1� eγ1 and
λt� eγ1+γt for t>1.
These three models increase in their generality. To

assemble the data for analysis, for each provider, we
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count the number of patients who arrive between 30
minutes before an hour and 30 minutes after as those
arriving for that hour. To arrive at the most parsimo-
nious model that adequately describes the data, we
conduct a series of statistical tests. Note that Model 2 is
a reducedmodel ofModel 3 (by specifying that at � a);
we can use the likelihood-ratio test to test whether
Model 3 makes a significant improvement overModel 2.
Model 1 and Model 2, however, are not nested. So we
use Vuong’s closeness test to test whether Model 2
improves upon Model 1 significantly (Vuong 1989).
For each provider, we adopt the simplest model, to
which more complicated models cannot make a sig-
nificant improvement, as our final model. We test the
goodness-of-fit of the finalmodel using the chi-square test.

3.3. Empirical Results
Table 1 summarizes the testing results of three fitted
models for each provider. Providers’ initials are used
to protect their confidentiality. It is important and in-
teresting to note that all three models have appeared as
the final model for some provider. Specifically, for
providers GED, KNI, and WAT, we find that the num-
ber of walk-ins in each slot follows the zero-inflated
Poisson distribution rather than the classic Poisson
distribution. For providers GED and KNI, the esti-
mated zero event probabilities a are constant over time
and they are both 0.14 in the final model. For provider
WAT, the zero event probability depends on hour of day,
and its estimated value is 0.99, 0.24, 0.42, 0.50, 0.44, 0.59,
0.39, 0.63, 0.33, 0.80, and 0.33 from 8 a.m. to 6 p.m., re-
spectively. For providers ALD, GAR, and LOK, we find
that the Poisson distribution is appropriate to model
the number of walk-ins arriving in each hour, although
its mean varies over time.

Table 1makes an important implication that there is
no one-size-fits-all model for walk-in processes. There
is relatively scant literature that examines the arrival pat-
tern of walk-ins using empirical data. The extant limited
literature almost unanimously suggests that the un-
scheduled walk-in process follows a (nonhomogeneous)
Poisson process; see, for example, Kim andWhitt (2014).

Our exploratory study contributes to this literature by
revealing new arrival patterns of walk-ins (i.e., zero-
inflated Poisson process). Although the previous
appointment-scheduling work that considers walk-
ins (all are simulation-based, to the best of our knowl-
edge) has predominantly used Poisson process to model
walk-in arrivals (e.g., Cayirli et al. 2008), we suggest
that appointment-scheduling models should be able
to accommodate general arrival patterns of walk-ins.
We develop one such optimization model in the
following sections.
Figure 1 shows the expected number of hourly

walk-ins for each provider. All providers except for
GAR take a lunch break around 1 p.m. (but still may
have a few walk-ins at that time), and thus we see a
bimodal distribution of the arrival rates. In contrast,
GAR does not take a lunch break and goes home earlier;
the walk-in rate to this provider shows a unimodal
pattern over the day. This observation suggests the po-
tential endogeneity of walk-ins on the provider’s work
schedule. That is, if patients know that the provider has
a lunch break (and does not serve patients during that
time), patients will not come. On a strategic level,
Alexandrov and Lariviere (2012) study such an issue.
Specifically, they consider how a firm (restaurant) should
make a reservation decision when customer walk-in be-
havior is influenced by such a decision. In contrast, our
mathematical formulation below assumes that the pro-
vider’s work schedule has already been fixed and
announced to patients, and thus the walk-in distribution
is exogenously determined. If the provider changes his
or her work schedule, our model can be rerun based
on the newly observed patient walk-in pattern after it
is stabilized, to generate the optimal schedule under
the new work schedule of the provider. It is, however,
very interesting to study how to set a provider’s work
schedule taking into account the endogeneity of walk-
ins, and we leave this topic for future research.

4. Basic Model
In this section, we develop a basic appointment-scheduling
model with random walk-in patients. For now, we

Table 1. Summary of Statistical Analysis

Provider Specialty Sample size Model 2 vs. 3 Model 1 vs. 2 Final model Goodness of fit

ALD Nurse practitioner 1,524 0.98 0.49 (0.63) Model 1 0.74
GAR Nurse practitioner 3,403 0.99 −0.00 (0.99) Model 1 0.86
GED Internal medicine 1,115 0.97 1.00 (0.32) Model 2 0.18
KNI Nurse practitioner 1,729 0.42 1.48 (0.14) Model 2 0.70
LOK Nurse practitioner 1,308 0.69 0.37 (0.71) Model 1 0.27
WAT Pediatrics 3,045 0.08 3.09 (0.00) Model 3 0.43

Notes. (1) Providers ALD, LOK, andWATwork from 8 a.m. to 6 p.m.; GARworks from 8 a.m. to 4 p.m.; GEDworks from 9 a.m. to 6 p.m.; and
KNI works from 8 a.m. to 5 p.m. (2) Column “Model 2 vs. 3” shows the p-value of the likelihood ratio test. If p< 0.1, Model 3 makes a significant
improvement over Model 2. (3) Column “Model 1 vs. 2” shows the Vuong-test statistic value (p-value in parentheses). A positive Vuong-test
statistic suggests that Model 2 is closer to the true model. Unless p< � 0.5, we still choose Model 1 as the final model. (4) Column “Goodness of
fit” shows the p-value of the goodness-of-fit test (p> 0.1 indicates a good fit).
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assume that all scheduled patients will show up at
their appointment times. We will extend our modeling
framework to incorporate patient no-show behavior in
Section 5. Throughout, we will use lowercase (up-
percase) Greek letters to denote random variables
(calculated values), lowercase (uppercase) letters to
denote variables (constants), and bold-faced lower-
case (uppercase) letters to denote vectors (matrices).
The dimensions of vectors or matrices should be evident
from the context. We provide a summary of the notations
in Table B.7 of Online Appendix B.

Consider a generic clinic session for a single pro-
vider. In practice, the length of a clinic session is
often measured by the number of appointment slots,
and patients are scheduled to arrive at the beginning
of these slots (patients are rarely scheduled to arrive
in the middle of a slot). Following this convention, we
consider a clinic session with T appointment slots,
where T is a prespecified number. The provider needs
to schedule npatients in these slots, and n is a decision
variable.

Besides these scheduled patients, a randomnumber
of patients may walk in for services. For tractability,
we assume that walk-in patients always arrive at the
beginning of each appointment slot.1 Let β � (β1, β2, . . . ,
βT) be a random vector with support on nonnegative
integers, where βt represents the number of walk-ins
arriving at the beginning of slot t. That is, the arrival
pattern of walk-ins may depend on time t. For now,
we assume that βt’s are independent of each other. (In
the next section, we will consider more general walk-
in processes, e.g., those with correlations of walk-in
counts at different times.) We note that β as a whole is
exogenously given and is independent of other aspects
of the model (see more discussions in Section 3.3).

We assume that the service time of each patient is
exactly one appointment slot (normalized as one unit

of time in our model). In practice, especially in primary
care, the provider usually can control her consultation
time with patients to be within the allotted time by
adjusting the conversation content and speed (Gupta and
Denton 2008). Indeed, deterministic service time is
a reasonable assumption commonly made in the
appointment-scheduling literature; see, for example,
Robinson and Chen (2010), LaGanga and Lawrence
(2012), and Zacharias and Pinedo (2014, 2017). Nev-
ertheless, we note that our models and solution ap-
proaches can be easily extended to incorporate random
service times with certain probability distributions (see
Online Appendix F).
In the setting above, we need to determine n, the

total number of patients to be scheduled, and also the
number of patients scheduled in each slot. Let x �
(x1, x2, . . . , xT) be our decision vector,2 in which xt is
the number of patients scheduled at slot t. It is evi-
dent that n � ∑T

t�1 xt. Following the previous literature—
for example, Robinson andChen (2010) andZacharias
and Pinedo (2014)—we assume that all scheduled
patients are punctual for tractability.
A common optimization framework in the litera-

ture is to assign different cost rates to patient wait
time, provider idle time, and overtime, and then to
minimize the expected total weighted cost with these
cost rates serving as the weights. We follow this
framework, but note that this cost structure can be
slightly simplified in our model without loss of gen-
erality. To see that, let CS and CW be the waiting cost
for a scheduled patient and a walk-in patient per ap-
pointment slot of time, respectively. Let CI and CO be
the provider’s idling cost and overtime cost per ap-
pointment slot of time, respectively. For a given
schedule, let ΓS and ΓW be the expected total wait time
of scheduled patients and that of walk-in patients,
respectively. Let ΓI and ΓO be the expected idle time

Figure 1. (Color online) Expected Number of Hourly Walk-ins for Each Provider
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and overtime of the provider. Thus, the expected total
weighted cost is

CSΓS + CWΓW + CIΓI + COΓO. (4)

Let ΓD be the expected duration of the whole clinic
session—that is, the time from the beginning of the
session to T or the time when the last patient leaves,
whichever is later. It is clear that ΓO � ΓD − T. Let NW
be the expected number of walk-in patients—that is,
NW � E(∑T

t�1 βt). Then,
∑T

t�1 xt +NW is the expected
total consultation time that the provider spends with
patients, and thus the difference between ΓD and∑T

t�1 xt +NW is the expected idle time of the provider—
that is, ΓI � ΓD −∑T

t�1 xt −NW . We can rewrite the
expected total weighted cost (4) as

CSΓS + CWΓW + CI(ΓD −∑T
t�1

xt −NW) + CO(ΓD − T). (5)

As NW and T are constants, they can be omitted from
the optimization process. Let CD � CI + CO, and nor-
malize CS to be 1. The expected total weighted cost in
our optimization objective can be simplified as follows:

ΓS + CWΓW + CDΓD −CI
∑T
t�1

xt. (6)

When deriving the optimal solution, we use (6) for
simplicity; we will use (5) when the actual objective
value is needed, such as calculating the expected total
cost associated with a schedule.

To calculate ΓS, ΓW , and ΓD, we first evaluate
Πt(k), the probability of k patients waiting for
services at the end of t. Let pt(b) be the probabil-
ity of b walk-ins arriving at slot t—that is,
pt(b) � Pr(βt � b)—and let Nt be a sufficiently large
number so that it only suffices to consider at most Nt

patients in the system at time t (Nt can be determined
by truncating from above the distribution of walk-ins
in slot t). Given a schedule x, we can write Πt(k) re-
cursively as

Πt(k)�
∑k−xt+1
j�0

Πt−1(j)pt(k − xt − j + 1)

+ Πt−1(0)pt(0) if k � 0 and xt � 0,
0 otherwise

{ (7)

for k � 0, ..,Nt and t � 1, . . . ,T with Π0(0) � 1. The first
term in the right-hand side (RHS) of Equation (7)
calculates the joint probability that j patients wait
at the end of t − 1, k − xt − j + 1 walk-ins arrive at t,
and one patient gets served at t. For k � 0, there is
one more term, which is the joint probability that
the system is empty at the end of t − 1, no walk-ins
arrive at t, and no patients are served at t (this term

is valid only if xt � 0—that is, no scheduled patients
arrive at t). For ΓD, we have

ΓD � T +∑NT

k�1
kΠT(k), (8)

in which the second term is the expected number of
patients waiting at the end of T.
Before analyzing patient wait time, we need to

specify the priority order between scheduled patients
and walk-ins. Although some walk-ins arrive due to
acute care needs, their health conditions are, in general,
stable. If indeed walk-ins have emergency issues that
require immediate attention, they are often diverted to
emergency rooms following the standard clinical pro-
tocol. Therefore, common practice usually gives walk-
ins lower priority compared with scheduled patients
(Berman 2016). The underlying cost structure adop-
ted by practitioners implies that the waiting cost
of walk-ins is no larger than that of scheduled pa-
tients. We follow this rationale and assume that CW ≤
CS � 1 throughout the paper. Based on the cμ rule,
we know that it is optimal to serve scheduled pa-
tients, if any, before walk-ins. [In contrast, interested
readers may refer to Koeleman and Koole (2012) for a
different model setting in which emergency patients
arrive randomly (as walk-ins in our model) but need
to be served before scheduled patients.]
Next, we evaluate patient wait time, starting with

the scheduled patients who have priority. Let st be the
number of scheduled patients waiting at the end of
slot t. We canwrite st recursively as st � (st−1 + xt − 1)+
for t � 2, . . . ,Twith s1 � (x1 − 1)+. It follows that thewait
time of scheduled patients ΓS(x) can be calculated as,

ΓS(x) �
∑T
t�1

st +
∑sT−1
j�1

j. (9)

Let ΓT(x) be the expected total wait time of all pa-
tients given a schedule x. Using (7), we have

ΓT(x) �
∑T
t�1

∑Nt

k�1
kΠt(k) +

∑NT

k�1

(∑k−1
j�1

j
)
ΠT(k).

Noting that ΓW is the difference between ΓT and ΓS,
we obtain

ΓW(x) � ΓT(x) − ΓS(x). (10)

Finally, our optimization problem in this section can
be represented as,

min
x∈ZT+

ΓS(x) + CWΓW(x) + CDΓD(x)−CI
∑T
t�1

xt (P1)

ΓS(x), ΓW(x),ΓD(x) are defined in(8), (9), (10),
respectively,
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where ZT+ represents the set of all T-dimensional
nonnegative integer vectors.3

4.1. Multimodularity of the Objective Function
The problem (P1) is a combinatorial optimization prob-
lem that is difficult to solve. In the following sections,
we explore the properties of (P1) and develop efficient
solution algorithms. To facilitate our discussion, we
first introduce the concept multimodularity.

Definition 1 (Hajek 1985). Define the vectors in ZT by

v0
v1
v2
..
.

vT−1
vT

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
�

(−1, 0, 0, . . . , 0, 0)
(1,−1, 0, . . . , 0, 0)
(0, 1,−1, . . . , 0, 0)

..

.

(0, 0, 0, . . . , 1,−1)
(0, 0, 0, . . . , 0, 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (11)

and let V� � {v0,v1, . . . , vT}. We say that a function g
on ZT+ is multimodular if for all x in ZT+,

g(x + vi) − g(x) ≥ g(x + vj + vi) − g(x + vj),
whenever vi,vj ∈V�, x+vi ∈ZT+, x+vj ∈ZT+ and vi �� vj.

Multimodularity can be interpreted as follows: The
marginal difference in the function value from perturbing
a solution x by vi is greater than or equal to that from
perturbing a solution x + vj by vi. One perhaps most
useful property of a multimodular function is stated
in the lemma below.

Lemma 1 (Murota 2005). If a function g(x) is multimodular,
then a local minimum on its domain is a global minimum.

Prior literature has shown that the objective function in
appointment-scheduling problems can be multimodular
incertain settings (Kaandorp andKoole 2007, Zacharias
and Pinedo 2017); seeSection 2 for adetaileddiscussion
on this literature. We extend this literature by showing
that this elegant property of the objective function still
holds with exogenous, random walk-ins.

Proposition 1. Define f (x): ZT+ → R, the objective function
of (P1), by f (x) :�ΓS(x) + CWΓW(x) + CDΓD(x) − CI

∑T
t�1

xt.

Then, f (x): ZT+ → R is multimodular on its domain ZT+.
Proposition 1 and Lemma 1 suggest that a local

optimal solution of (P1) is also globally optimal. To
illustrate, we first define the neighbor of a solution
in our modeling context.

Definition 2 (Neighbor of x). We say x′ is a feasible
neighbor of x if x ∈ ZT+ and x′ � x +∑

v∈V v for some
V=V� and V �� ∅, where V� is defined in (11).

Note that V is a nonempty strict subset of V�. For
instance, x + v1 is a neighbor of x; the former moves a
patient from slot 2 to slot 1, while keeping the posi-
tions of other patients unchanged. Then, we obtain the

following criteria to determine whether a solution is
optimal or not, based on a result in Altman et al. (2000).

Corollary 1. If x ∈ ZT+ and f (x) ≤ f (x′) for any feasible
neighbor x′ of x, then x is a global optimal solution for (P1).

Corollary 1 guarantees that we can arrive at the
optimal schedule via a local search (i.e., starting from
any feasible solution, moving to a feasible neighbor so-
lution, if any, that improves the current solution, and
continuing in this fashion until no better solutions can
be found in the neighborhood). However, a feasible so-
lution can have atmost 2(T+1) − 1 neighbors, which may
make local search ineffective in solving large-scale
problems.Wenext explore the structural properties of
the optimal schedule to gain additional insights and
to further simplify the solution process.

4.2. Structural Properties of the Optimal Schedule
When a manager can choose the total number of
patients to schedule and if all scheduled patients
show up, then there seem to be no incentives for the
manager to overbook—that is, schedule multiple pa-
tients into a single appointment slot. Consider a schedule
that does overbook; then, one can improve it by
avoiding overbooking in one of the two following
ways. If there are empty slots after the overbooked slot,
then moving the overbooked patient to the next closest
empty slot only decreases the total waiting cost of
scheduled patients and does not affect other costs. If,
however, all slots after the overbooked slot are booked,
then removing additional patients from the over-
booked slot altogether reduces the total waiting cost
of both scheduled and walk-in patients, as well as the
overtime cost. Following this rationale, we have the
following structural result for the optimal schedule.

Proposition 2. For (P1), there exists an optimal schedule
that does not overbook—that is, xt ≤ 1 for all t � 1, 2, . . . ,T.

Proposition 2 indicates that in order to find an op-
timal schedule, we only need to examine at most 2T

possible ones that do not overbook. Recall thatCorollary 1
suggests only local search in the neighborhood of the
current solution is needed. Thus, in order to find an op-
timal schedule, one only needs to consider those non-
overbooking schedules in local search. Leveraging both
the structural properties of the objective function and
those of the optimal schedule can drastically reduce
the search space for the optimal schedule.

5. Model Incorporating No-Show Behavior
In this section, we discuss the model to optimize the
appointment schedule when both random walk-in
and customer no-show behaviors are present. To be
consistent with our earlier developments, let x be
the schedule, our decision vector, and β represent
the vector of random walk-ins. Let α(x) � (α1(x1),
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α2(x2), . . . , αT(xT)) denote the number of show-up pa-
tients among those scheduled. That is, αt(xt) is the
number of show-ups at t given that xt patients are
scheduled at t. We assume that each scheduled pa-
tient independently shows up (or not). We start by
considering the homogeneous case. Specifically, let qs

be the show-up probability for all scheduled patients,
then αt(xt) follows the binomial distribution with its
probability mass function described as follows:

Pr(xt � k) � qt(k, xt) � xt
k

( )
(qs)k(1 − qs)(xt−k),
k � 0, 1, . . . , xt.

Later in Section 5.4, we will relax this assumption
and discuss how to handle heterogeneous and time-
dependent patient no-shows.

Same as in Section 4, the objective of our optimization
model here is to minimize the expected total weighted
cost—that is, ΓS + CWΓW + CDΓD −CIE

∑T
t�1 αt(xt)[ ]

. For
convenience, we still useΠt(k) to denote the probability
of k patients waiting at the end of t. Given x, we have

Πt(k) �
∑xt
i�0

∑k−i+1
j�0

Πt−1( j)qt(i, xt)pt(k − i − j + 1)

+ Πt−1(0)qt(0, xt)pt(0) if k � 0,
0 if k> 0,

{
(12)

for k � 0, ..,Nt and t � 1, . . . ,TwithΠ0(0) � 1. The first
term on the RHS of (12) is the probability of j patients
waiting at the end of t − 1, i out of xt scheduled patients
showing up at t, and k − i − j + 1 patients walking in
at t. For k � 0, there is one more term, which is the
probability that the system is empty at t − 1 and no
scheduled patients or walk-ins arrive at t.

Similar to our earlier derivation of (8), the expected
duration ΓD here is T plus the expected number of
patients at T + 1. Thus, we have

ΓD(x) � T +∑NT

k�1
kΠT(k). (13)

Recall that scheduled patients are given priority over
walk-ins.4 Let Ψt(k) be the probability of k scheduled
patients waiting at the end of t. Then, we can write
Ψt(k), t � 1, 2, . . . ,T, recursively as

Ψt(k) �
∑k+1
j�0

Ψt−1( j)qt(k − j + 1, xt)

+ Ψt−1(0)qt(0, xt) if k � 0,
0 if k � 1, 2, . . . ,n,

{
(14)

where n � ∑T
t�1 xt and Ψ0(0) � 1. The first term of the

RHS is the probability of j scheduled patients waiting
at the end of t − 1, one of them served, and k − j + 1
scheduled patients showing up at t. For k � 0, there is

one more term, which is the probability that the
system is empty at t − 1 and no scheduled patients
show up at t. It follows that the expected total wait
time for scheduled patients, ΓS, can be calculated by
summing up the expected number of scheduled pa-
tients waiting at the end of each appointment slot.
More precisely, we have

ΓS(x) �
∑T
t�1

∑Nt

k�1
kΨt(k) +

∑NT

k�1

(∑k−1
j�1

j
)
ΨT(k). (15)

Similarly, the expected total wait time of all patients
ΓT can be calculated by summing up the expected
number of all patients waiting at each slot—that is,

ΓT(x) �
∑T
t�1

∑Nt

k�1
kΠt(k) +

∑NT

k�1

(∑k−1
j�1

j
)
ΠT(k).

And, the expected wait time of walk-ins ΓW is the dif-
ference between ΓT and ΓS—that is,

ΓW(x) � ΓT(x) − ΓS(x). (16)

Finally, the optimization model when both random
walk-in and patient no-show behaviors are present
can be formulated as follows,

min
x∈ZT+

ΓS(x) + CWΓW(x) + CDΓD(x) − CIE
[∑T
t�1

αt(xt)
]
(P2)

ΓS(x), ΓW(x),ΓD(x) are defined in (13), (15), and
(16), respectively.

We note that the objective function of (P2) remains
multimodular, with both patient no-shows and ex-
ogenous random walk-ins considered. This result
extends Proposition 1 and is formalized below.

Proposition 3. Define h(x): ZT+ → R, the objective function of

(P2), by h(x):�ΓS(x)+CWΓW(x)+CDΓD(x)−CIE
[∑T
t�1

αt(xt)
]
.

Then, h(x): ZT+ → R is multimodular on its domain ZT+.
Note that Proposition 3 still holds under a general

walk-in process (e.g., when βt’s, the number of walk-
ins in different time slots, are correlated), because the
proof does not require the independence of walk-in
counts at different times. Following Proposition 3,
we have an equivalent result of Corollary 1 below.

Corollary 2. If x ∈ ZT+ and h(x) ≤ h(x′) for any feasible
neighbor x′ of x (in the sense of Definition 2), then x is an
optimal solution for (P2).

Although a local search can lead to an optimal
schedule for (P2), we observe that (P2) is much harder
than (P1). First of all, when patient no-shows pres-
ent, it is more difficult and takes much more time to
evaluate ΓS(x), ΓW(x) and ΓD(x) for a given x. More

Wang, Liu, and Wan: Appointment Scheduling in the Presence of Walk-ins
Management Science, Articles in Advance, pp. 1–20, © 2019 INFORMS 9



importantly, there seems to be no clear structures for the
optimal schedule when both walk-ins and no-shows are
present. In an optimal schedule, some slots may be
overbooked (this is different from Proposition 2), and
some may be purposefully left open (this is different from
the No Hole property identified in Robinson and Chen
2010). In short, overbooking and “holes” may coexist
in an optimal schedule, without a straightforward
pattern; see Section C.5 in the online appendix for some
concrete examples of complex optimal schedules with
walk-ins. Such a lack of clear structures for the optimal
schedule prohibits one from ruling out nonoptimal
schedules easily by checking the pattern of the schedule.

5.1. Two-Stage Programming Model
To solve (P2) more efficiently, we propose a two-stage
programming approach. As demonstrated later, this
two-stage optimization model is quite novel—it provides
a much quicker way to evaluate the objective function,
and in addition, the multimodularity result obtained in
Proposition 3 earlier, if it holds, can be used to guide the
solution search in this two-stage programming model.

To facilitate our discussion, we use a sample path
representation of the problem.We useΩo(x) to denote
the set of all possible scenarios given a schedule x. Let
ωo ∈ Ω

o(x) be an arbitrary scenario, and α(ωo, x) and
β(ωo) be the vector of show-up patients and the vector
of walk-ins associated with scenario ωo, respectively.
Let T be a number such that the probability of any
patient waiting after T is sufficiently small; one nat-
ural choice of T is T +NT − 1. Let yt be the total number
of patients waiting at the end of slot t and y � {y1,
y2, . . . , yT}. It follows that

yt �
yt−1 + αt(xt, ωo) + βt(ωo) − 1
( )+ for 1 ≤ t ≤ T

with y0 � 0,
(yt−1 − 1)+ for T< t ≤ T.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(17)

Let yst be the number of scheduled patients waiting at
the end of slot t and ys � {ys1, ys2, . . . , ysT}. We have

yst �
(yst−1 + αt(xt, ωo) − 1)+ for 1 ≤ t ≤ T

with ys0 � 0,
(yst−1 − 1)+ for T< t ≤ T.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (18)

Note that the number of walk-ins waiting at the end
of slot t is yt − yst . Also, ΓD � T + yT, and thus CDT is a
constant that can omitted from the objective func-
tion of (P2). We can rewrite (P2) as follows:

min
x∈ZT+

Eωo

[
Υ(x, ωo)−CI

∑T
t�1

αt(xt, ω0)
]
, (T1)

where

Υ(x, ωo) �
{∑T
t�1

yst + CW
∑T
t�1

(yt − yst) + CDyT
∣∣∣(17), (18)}.

The main difficulty in solving (T1) is that it is neither
a two-stage linear nor integer programming model.
The complicating term is αt(xt, ωo), which for a given
scenario ωo may not be represented as a linear func-
tion of xt. That is, αt(xt, ωo) cannot be represented as
f1(xt) × f2(ωo) for some f1(·) and f2(·). In the next section,
we introduce a simple and yet innovative reformu-
lation that transforms (T1) into a stochastic integer
programming model.

5.2. Problem Reformulation and Its Matrix Form
We define a new set of decision variables zt,i, t � 1, 2, . . . ,
T and i � 1, 2, . . . ,NS, such that if patient i is scheduled
at t, then zt,i � 1, otherwise zt,i � 0. We chooseNS to be
a sufficiently large number so that at optimality no
more thanNS patients would be scheduled. (Lemma 8
in the online appendix shows how to obtain such
an NS.) Let z � (z1,1, · · · , z1,NS , z2,1, · · · , z2,NS , · · · , zT,1, · · · ,
zT,NS)′ ∈ {0, 1}T·NS , where the superscript ’ of a vector or
a matrix represents the transpose operator. Noting

that xt � ∑NS

i�1
zt,i, ∀t � 1, 2, . . . ,T, we obtain an equiva-

lent two-stage stochastic integer programming model
of (T1), described in the following proposition. Let
Ω(z) be the set of all possible scenarios given z.
For a scenario ω ∈ Ω(z), γ(ω) � (γ1,1(ω), · · · , γT ,NS (ω))′
where γt,i(ω) is the indicator for patient i’s show-up
status at t (1 means show-up and 0 otherwise), and
β(ω) � (β1(ω), · · · , βT(ω)) where βt(ω) is the realized
number of walk-ins in t.

Proposition 4. Problem (T1) is equivalent to the following
formulation:

min
z∈{0,1}T·NS

Eω

[
Υ(z, ω) − CI

∑T
t�1

∑NS

i�1
γt,i(ω)zt,i

]
∑T
t�1

zt,i ≤ 1 for 1 ≤ i ≤ NS,

(T1-R)

where

Υ(z, ω)

�

min
y,ys∈ZT+

∑T
t�1

yst + CW
∑T
t�1

(yt − yst) + CDyT

yt ≥ yt−1 +
∑NS

i�1
γt,i(ω)zt,i + βt(ω) − 1

for 1 ≤ t ≤ T with y0 � 0,
yt ≥ yt−1 − 1 for T< t ≤ T,

yst ≥ yst−1 +
∑NS

i�1
γt,i(ω)zt,i − 1

for 1 ≤ t ≤ T with ys0 � 0,
yst ≥ yst−1 − 1 for T< t ≤ T.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

To economize on notation, we introduce the ma-
trix form of (T1-R) below. Let e be an NS dimensional
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unit vector. Let T identity matrices make up W—that
is, W � [I I · · · I] where I is the NS dimensional
identity matrix. Let y� (y1,y2, . . . ,yT,ys1,ys2, . . . ,ysT)′. Let
c� (CW , . . . ,CW ,CW +CD,CW , . . . ,CW ,1−CW , . . . .,1−CW)′
be a 2T-dimensional vector where all the first T ele-
ments are CW except for Tth element and the last T
elements are 1−CW . LetM(ω)be a 2T byNS×Tmatrix,
where element Mt,(t−1) ×NS+i(ω) and Mt+T,(t−1) ×NS+i(ω)
equal to γt,i(ω) for all t≤T, i≤NS, and all other elements
are 0. Let d(ω) be a 2T-dimensional vector where the
first T elements are βt(ω)−1 and other elements are –1.
Let U be a 2T-dimensional square matrix such that

U� U0 0
0 U0

[ ]
, where U0�

1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 · · · −1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Noting that the matrix U is totally unimodular,5 we
conclude that (T1-R) can be simplified into a stochas-
tic integer programming problem where the first stage
is a 0-1 integer program and the second stage is a
pure linear program without integer constraints on
y. This result is formalized in the following theorem.

Theorem 1. Problem (T1) can be reformulated as follows:

min
z∈{0,1}T·NS

Eω Υ(z, ω)−CIγ(ω)z[ ]
(T2)

Wz ≤ e,

where

Υ(z, ω) �
{
min
y≥0 c′y|Uy ≥ M(ω)z + d(ω)

}
. (Prim)

5.3. Solution Approaches
5.3.1. Sample Average Approximation. One common
approach to solve a two-stage stochastic programming
problem is via sample average approximation (SAA)—
that is, randomly generating a sufficient number of
sample scenarios and then minimizing the average
cost of these samples. With a slight abuse of the no-
tations, we let Ω be the set of all samples randomly
generated, and ω ∈ Ω represent one sample in the set.
Let |Ω| denote the number of samples. Then, we can
(approximately) solve (T2) by solving the following
integer programming problem:

min
y(ω)≥0,z∈{0,1}T·NS

1
|Ω|

∑
ω∈Ω

c′y(ω) − CIγ(ω)z[ ]
(T2-SAA)

Wz ≤ e,
Uy(ω) −M(ω)z ≥ d(ω),∀ω ∈ Ω.

By reformulating the original problem (T1) into a
mixed-integer linear program (T2-SAA), we make a

challenging problem amenable by many off-the-shelf
optimization software packages such as Gurobi.6

Directly solving (T2-SAA) via optimization software
is clearly one solution approach, but this method does
not take full advantage of the multimodularity result
established in Proposition 3. To leverage this im-
portant property of the objective function, we can find
a potentially optimal schedule via local search in the
first stage and evaluate this solution via solving the
second-stage problem. Using the fact that the second-
stage problem is a pure linear program (LP), we can
further speed up the search procedure in the first stage.
Extensive numerical experiments in Section 6 show that
our proposed approach, which exploits both the struc-
tural properties of the objective function and the linear
reformulation, is much faster than all known methods
that can solve the present problem. Details of our pro-
posed approach are illustrated in the section below.

5.3.2. Constraint Generation Algorithm. Motivated by
Wollmer (1980), we can write the dual of the second-
stage problem (Prim) for given z and scenario ω as
follows:

max
v≥0 v′ M(ω)z + d(ω)( ) (Dual)

U′v ≤ c.

Recall that the primal problem (Prim) is to calculate
the cost under scenario ω and decision z, so it is al-
ways feasible and bounded. Thus, the dual problem
(Dual) is also feasible and bounded. Let v(z, ω) be the
optimal solution of (Dual) given z and ω. Denote the
set z|Wz ≤ e, z ∈ {0, 1}T·NS

{ }
as ]. Let

a(z) � Eω v(z, ω)′M(ω)[ ], b(z) � Eω v(z, ω)′d(ω)[ ],
h(z) � Eω CIγ(ω)z[ ]

.

Proposition 5. Problem (T2) is equivalent to the following
Problem (T2-D):

min
z∈],u

u (T2-D)

a(z′)z + b(z′) − h(z) ≤ u for all z′ ∈ ]. (19)

Proposition 5 is essential in the development of our
algorithm. Its proof can be found in the online ap-
pendix, and here we provide an intuitive explanation.
By strong duality, we know that for each z and ω, the
objective value of (Dual) is an upper bound to that of
(Prim), and this bound is tight. It can be shown that
this relationship also holds when taking expectation
with respect to ω. Specifically, let Υ(z) � Eω[Υ(z, ω)],
where Υ(z) is the objective value for (Prim). Then, for
any given z ∈ ], we have

a(z′)z + b(z′) − h(z) ≤ Υ(z) − h(z),∀z′ ∈ ]. (20)
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In particular, when z′ � z, we have

a(z)z + b(z) − h(z) � Υ(z) − h(z). (21)

Now, let usfix a z ∈ ]. There is a smallest u, denoted as
u(z), which satisfies the subset of the constraints in
(19) for that fixed z. That is, u(z) � min u : a(z′)z+{
b(z′) − h(z) ≤ u,∀z′ ∈ ]}. By (20) and (21), we know
that u(z) � Υ(z) − h(z). Solving (T2-D) leads to the
smallest u(z) for z ∈ ], equivalent to minimizing Υ(z) −
h(z), which is exactly the objective of our original
problem (Prim). The algorithm below specifies how to
solve (T2-D).

Algorithm 1 Constraint Generation Algorithm (CGA)
1: initialize a schedule z∗, u←Υ(z∗) −h(z∗), A← a(z∗),

b← b(z∗), e← 1
2: while indicator � 1 do
3: indicator ← 0
4: for all neighbors of z∗ (in the sense of Defini-

tion 2) do
5: z0 denotes the current neighbor
6: if Az0 + b − h(z0)e< ue then
7: A ← A;a(z0)( )

, b ← b; b(z0)( )
, e ← e; 1( )

8: if a(z0)z0 + b(z0) − h(z0)< u then
9: u ← a(z0)z0 + b(z0) − h(z0), z∗ ← z0,

indicator ← 1
10: break
11: end if
12: end if
13: end for
14: end while
15: return z∗

In Algorithm 1, z∗ represents the best solution
found so far, and u is a known upper bound for the
optimal objective value. Line 1 initializes a solution
and its corresponding constraints described by (19).
In the “while” loop, indicator=1 means that a better
solution has been found. In the “for” loop, neighbors
of z∗ (in the sense of Definition 2) are checked one by
one. For the neighbor currently being checked, say, z0,
if the condition Az0 + b − h(z0)e< ue in line 6 is sat-
isfied, then it has potential to improve z∗, and a(z0)
and b(z0) are added into A and b—that is, constraint
generation. Line 8 checks whether z0 is strictly better
than z∗. If so, u and z∗ are updated; this “for” loop is
broken because a better solution has been found, and
the algorithm goes back to line 2 and continues to check
neighbors of the new z∗. If the condition in line 6 or
line 8 is not satisfied, the algorithm goes back to line 2
to check another neighbor of z∗ (not updated). If all
neighbors of z∗ are checked and none can improve z∗,
then z∗ is optimal (indicator becomes 0).

Theorem 2. Algorithm 1 stops in a finite number of itera-
tions, and its output is an optimal solution of problem (T2).

5.4. Value of Linear Reformulation (T2)
In Section 5.2, we introduce a simple, and yet inno-
vative variable expansion (from xt to zt,i) to transform
the original problem (T1) into a stochastic two-stage
linear program (T2) with binary constraints in the first
stage. This reformulation makes the original problem
much more amenable. Without the reformulation,
the original problem (T1) can only be solved by local
search (see Proposition 3 and Corollary 2). This ap-
proach, although better than complete enumeration,
still requires evaluating the cost for each potential
solutionbasedon recursiveEquations (12) and (14), and
can take a long time. In the reformulation (T2), the
second stage is a pure LP problem, which can be solved
directly to obtain the cost for each potential solution;
this is much more efficient than recursive calculations.
And, we can further speed up the local search proce-
dure by leveraging the dual (see Algorithm 1). Our
extensive numerical study in Section 6 shows that our
proposed approach is the most efficient one among
those knownmethods and can solve large-scale problems.
In addition to the above computational benefits,

one unique and critical strength of the reformulation
(T2) lies in its capability to deal with two important
uncertainties in the system with very general forms,
which, to the best of our knowledge, cannot be handled
by existing approaches.
• General Walk-ins: With a general walk-in pro-
cess (e.g., when walk-in counts in different time slots
are correlated), one cannot use recursive Equations (12)
and (14) to evaluate the objective function. However,
our two-stage programming model and reformulation
approach still work. To implement SAA or CGA, one
only needs to generate walk-in samples [i.e., βt(ω)’s]
based on the joint distribution of walk-ins, which can
be any general distribution. The increase in compu-
tational times, if any, is only due to random sample
generation of walk-ins.
• General No-shows: When patient no-show proba-
bility depends on time, or become different among
patients, the multimodularity result (i.e., Proposition 3)
fails. In this case, building an mixed-integer linear
program (MILP) model with our linear reformulation
is the only known method to get an exact optimal
schedule, without complete enumeration. To use our
reformulation (T2), one only needs to draw the show-
up status variable γt,i(ω) based on both time slot t and
individual patient i, accordingly.

6. Numerical Study
Our numerical study has several purposes. First, we
compare existing solution approaches for our model
and demonstrate that the Constraint Generation Al-
gorithm developed in this paper is by far the most ef-
ficient one. Second, we investigate how changes in the
practice environment (e.g., walk-in pattern/volume
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and no-show rate changes) influence the optimal ap-
pointment schedule. This analysis gives rise to impor-
tant insights on how to manage an appointment-based
service in the presence of walk-ins. Third, we develop
a simple heuristic policy, which can be used by
practitioners as a “rule of thumb” in making their
scheduling decisions. We then use real data collected
from our collaborating organization to carry out case
studies and evaluate the efficiency gains that may re-
sult from adopting our proposed approaches (i.e., the
scheduling optimization model as well as the heuristic
policy) to replace current practice. Full benefit of these
proposed approaches can be realized with sufficient
demand. Finally, in case patient demand is insufficient
to fill up all scheduled appointment slots to optimum, we
propose simple “online” scheduling methods (based
on our optimization model) to assign patients one by
one to appointment slots as their appointment re-
quests arrive; we numerically demonstrate that these
online methods perform quite well comparedwith their
offline benchmarks.

We use a variety of model parameters in our nu-
merical study to capture various settings. For ease
of exposition, we focus on T � 10 and T � 14 as the
length of the session.7 Motivated by our empirical
findings in Section 3, we consider two different “shapes”
of walk-in pattern: unimodal and bimodal. We vary
the walk-in volumes so that the average expected num-
ber of walk-ins per slot is 0.3, 0.6, and 0.9, respectively.
Figure 2 shows the expected number of walk-ins in
each time slot for different scenarios we consider when
T � 14; in each slot, the number of walk-ins follows a
Poisson distribution with the corresponding mean,
and the numbers of walk-ins in different slots are in-
dependent random variables unless otherwise specified.
(A similar figure for T � 10 can be found in Online
Appendix E.) We consider two levels of no-show

probability: 0.5 and 0.1. Previous literature sug-
gests that the provider unit overtime cost is around 15
times of the patient unit waiting cost, and the provider
unit idling cost is around 10 times of that (Robinson and
Chen 2010, LaGanga and Lawrence 2012, Zacharias
and Pinedo 2014). Recall that we normalize the waiting
cost for scheduled patients to be 1. We thus set CD (sum
of unit overtime cost and unit idling cost) to be 15 or
25, and set CI (idling cost) to be 5 or 10. For walk-ins,
we set their unit waiting cost CW to be 0.5 or 0.9.

6.1. Performance Comparison of Different
Solution Approaches

In this section, we use an extensive number of problem
instances to evaluate and compare the computational
performances of four different solution approaches
specified below.
• Local Search starts from a feasible solution, moves
to a neighbor solution defined by Definition 2, if any,
that improves the current solution, and continues in
this fashion until no better solutions can be found in
the neighborhood. Given a schedule, its cost is calcu-
lated recursively via (12) and (14). By Proposition 3 and
Corollary 2, such a procedure always stops at the op-
timal schedule. However, the number of neighbors of
one schedule is 2(T+1) − 1, which increases exponen-
tiallywith the size of the problem, and in addition, the
recursive calculationsmay be computationally expensive.
• Mixed-Integer Linear Program approach is de-
veloped in Section 5.2 by reformulating the original
problem (T1), which is very challenging, into anMILP
(T2-SAA), which is amenable by many off-the-shelf
optimization software packages. In our numerical ex-
periments, we use Gurobi, perhaps one of the fastest
solvers, to solve (T2-SAA) directly. However, this ap-
proach disregards the multimodularity property of the
objective function.

Figure 2. (Color online) Expected Number of Walk-ins for T � 14

Notes. The expected number of walk-ins in each time slot for each scenario is specified as follows. Uni1: (0.1, 0.1, 0.25, 0.25, 0.4, 0.4, 0.6, 0.6, 0.4,
0.4, 0.25, 0.25, 0.1, 0.1), Uni2 doubles Uni1, and Uni3 triples Uni1; Bi1: (0.1, 0.25, 0.4, 0.6, 0.4, 0.25, 0.1, 0.1, 0.25, 0.4, 0.6, 0.4, 0.25, 0.1), Bi2 doubles
Bi1, and Bi3 triples Bi1.
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• Local Search + Linear Reformulation (LS + LR)
follows the same procedure as Local Search, the first
approach above, except that this approach solves the
second-stage linear program in (T2) to get the cost for a
given schedule, insteadofusing recursiveEquations (12)
and (14). This approach takes advantage of both the
multimodularity result and the linear reformulation.
Solving a linear program is likely to be faster than
using recursive equations.
• Constraint Generation Algorithm is proposed in

Section 5.3.2. Similar to the third approach (LS + LR),
this approach leverages the multimodularity result
and linear reformulation. However, it can eliminate a
nonoptimal schedule without knowing its cost, and
thus it is expected to further speed up the search
procedure.

Compared with “Local Search,” “MILP” is in gen-
eral faster, but can be slow in some cases. This may be
due to the settings of the solver. As expected, “LS +
LR” is much faster than the pure “Local Search” in all
cases, suggesting that directly solving the second-stage
problem as an LP indeed takes much less time than
using recursive equations. In “CGA,” the solution
search path is identical to those of Local Search and
LS + LR, but the objective function can be evaluated
much faster byusing the dual of the linear reformulation.
Thus, CGA ought to be much faster than Local Search
and LS + LR. Indeed, CGA performs extremely well and
is the best among all four approaches. Specifically, CGA
can be 2–5 times faster than LS + LR and 2–10 times
faster than the pure Local Search. Details can be found
in Table E10 of the online appendix.

We also test the performance of our solution ap-
proaches for problem instances with correlated walk-
ins and heterogeneous no-shows. We use CGA to
solve problems with correlated walk-ins only. For

each of such problem instances, we randomly generate a
correlation matrix and then follow Cario and Nelson
(1997) to generate multivariate Poisson data with this
correlation structure, which are then used as walk-in
samples. When heterogeneous no-shows present, MILP
is the only knownmethod that can solve the problem for
optimality without complete enumeration. We consider
two levels of no-show probabilities: 0.5 and 0.1, re-
spectively. Our solution approaches can achieve opti-
mality in these general instances within reasonable
amounts of time (see Table E11 in the online appendix).

6.2. Analysis of the Optimal Schedule Pattern
Using themodel parameter setting above, we conduct
an extensive sensitivity analysis to investigate the
impact of walk-in pattern/volume, no-show rate, and
unit costs on the optimal schedule. Specifically, we
look into the “pattern” and the expected total cost of
the optimal schedule, aswell as the optimal number of
patients to be scheduled.
Figures 3 and 4 depict, respectively, the shape of

the optimal schedule under various settings. For ease of
discussion, we focus on two cost-parameter settings that
represent two extremes of our parameter spectrum. In
Figure 3, the unit idling cost is large (CI � 10), the unit
overtime cost is small (CD − CI � 5), and walk-ins are
less important (CW � 0.5). In contrast, Figure 4 shows
the results when the unit idling cost is small (CI � 5),
overtime cost is large (CD − CI � 20), and walk-ins are
more important (CW � 0.9). Each figure contains four
panels, and each panel consists of three subfigures.
Panels on the left have a unimodal walk-in pattern,
whereas panels on the right see a bimodal walk-in
pattern. The two panels on the top have higher no-show
probabilities than the panels below. Within each panel,
the average expected number of walk-ins per slot

Figure 3. (Color online) Comparison of the Optimal Schedules (T � 10, CI � 10, CD � 15, CW � 0.5)
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increases from 0.3 to 0.9 at an increment size of 0.3, from
the leftmost subfigure to the rightmost one. In each
subfigure, the height of each bar represents the optimal
number of patients scheduled in each time slot; the
curve on the top shows the expected number ofwalk-ins
arriving in each time slot.

Intuition suggests us to reserve holes (i.e., to pur-
posefully leave some slots empty) in the appointment
schedule in anticipation for walk-ins—and—to over-
book (i.e., to schedule multiple patients in one slot) to
compensate for potential no-shows. These two coun-
tervailing forces make it very difficult, if not impossi-
ble, to conceive the exact optimal schedule without
resorting to an optimization approach. If we think of a
consecutive period without scheduled patients as a
single hole, we see that the optimal number of holes does
not have to be the same as the number of modes in the
distribution of walk-ins. In addition, overbooking
and holes may coexist in an optimal schedule, sug-
gesting that walk-ins cannot fully offset the impact of
no-shows and vice versa.

Although the exact optimal schedule depends on a
variety of model parameters, we can make a few mean-
ingful observations on the pattern. First, patients tend to
be scheduled in slots with low walk-in rates, and holes
that are reserved for anticipated walk-ins often follow
the peaks of walk-in arrivals (due to queueing effects).
When walk-in volume increases, more holes are re-
served around peaks of walk-in arrivals. Second, when
no-show rate is high and walk-in volume is small, pa-
tients tend to be overbooked in early slots. This “front-
loading” pattern is consistent with that reported in
earlier literature when walk-ins are not considered
[see, e.g., Hassin and Mendel (2008)]. However, we
can expect that front-loading would disappear if
walk-in rate is high in early appointment slots. Third,

the optimal schedule tends to (over)book more when
the unit idling cost is higher, the overtime cost is lower,
and the wait time cost of walk-ins is lower (Figure 3); if
these cost parameters change to the opposite direction,
the optimal schedule reserves more holes (Figure 4).
Next, we investigate how walk-in patterns, no-

shows and cost parameters influence the optimal
cost (C∗) and the optimal number of scheduled pa-
tients (n∗). Detailed results for T � 14 are reported in
Table 2, where we also show the cases without walk-
ins as a benchmark (results for T � 10 can be found in
Table E13 of the online appendix). As expected, a
larger no-show rate or walk-in volume leads to larger
variability in the system, and thus a higher C∗. At the
same time, a higher level of no-show rate results in a
larger n∗, whereas a larger walk-in volume makes n∗
smaller. When the walk-in volume is large, we ob-
serve that a bimodal arrival pattern gives rise to a
lower C∗ compared with a unimodal arrival pattern.8

This is likely because the variability in the arrival
process is smaller for a bimodal walk-in arrival pat-
tern than a unimodal one (given that the average per-
slot walk-in rate is fixed). Finally, one noteworthy
second-order effect is that when the unit idling cost is
smaller and overtime cost is larger, the increase of the
overall cost due to the increase in walk-in volumes is
much more significant (than the case when the idling
cost is larger and overtime cost is smaller). A higher
volumeofwalk-insmeans less idling, butmoreovertime,
which may not be easily contained by scheduling de-
cisions alone. Thus, the overall cost is more sensitive to
walk-in volumes when unit overtime cost is large (and
unit idling cost is small).
From these numerical results, we can glean quite a

few important high-level managerial insights. First
of all, both walk-in and no-show behaviors create

Figure 4. (Color online) Comparison of the Optimal Schedules (T � 10, CI � 5, CD � 25, CW � 0.9)
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variability (in the arrival process) to the system. Al-
though proper scheduling can counter some of their
negative impact, scheduling is not a panacea (because
the overall cost still increases as no-shows andwalk-ins
increase). Practitioners and researchers still need to
explore effective ways to reduce no-shows and control
walk-ins. Second, walk-in pattern significantly in-
fluences the optimal schedule and the system cost.
A bimodalwalk-in pattern,which “smooths” out walk-
in arrivals over time, tends to result in a smaller cost
compared with a unimodal walk-in arrival process.
Thus, adjusting the walk-in arrival pattern to reduce
variability in arrivals, if possible, can be quite useful for
practitioners to improve clinic patient flow. Third, if the
unit idling cost is small and overtime cost is large—say,
in a practice environment where all providers are sala-
ried and no one has strong incentives to overwork—
allowing intensive walk-ins may be quite undesirable
(because in this case, raising the volume of walk-ins
can increase the overall cost significantly, even if one
can adjust the appointment schedule properly).

6.3. Heuristic Scheduling Rule
In this section, we design a simple heuristic schedul-
ing policy that can serve as a rule of thumb for practi-
tioners to use. We demonstrate that this simple heuristic
performs fairly well, and its optimality gap is on average
10% in our numerical tests.

This heuristic policy has two easy steps. The first
step is to determine n, the number of scheduled pa-
tients. To make it simple, we choose to ignore the
waiting cost of patients and only take into account the
idling cost and overtime cost of the provider here. Let
κ(n) be a random variable that represents the total

number of patients arriving for services. To deter-
mine n, we solve the following simple newsvendor-
like optimization problem:

min
n∈Z+

CIE(T − κ(n))+ + COE(T − κ(n))−. (22)

Let nh be the solution to (22). Then, the second step is
to schedule these nh patients into T slots. Recall that
two major insights obtained in Section 6.2 are (i) slots
with high walk-in rates are often kept empty; and
(ii) we tend to front-load patients in early slots to
counter the negative impact of no-shows. Inspired by
these insights, we propose the following simple al-
location rule.
• First, we try to match “supply” and “demand” in
each slot by calibrating the expected number of pa-
tients who arrive for service is each slot to be 1,
adjusting for their waiting costs. Note that if there are
too many walk-ins in a slot or their waiting cost rate
CW is high, we reserve holes.
• If we cannot exhaust allocating all nh patients in
the first phase, we consider front-loading.
The detailed procedure of our allocation rule can be

found in Online Appendix D.
We test this simple heuristic using the same pa-

rameter settings as in Section 6.2. For T � 10 and
T � 14, the average percentage optimality gaps of this
heuristic across all scenarios we tested are 9% and
12%, respectively. Details can be found in Table E14
in the online appendix. Although this heuristic obvi-
ously is not as good as solving the optimization model,
it performs reasonably well in general. Given the sim-
plicity and easiness to implement, it can be quite use-
ful for practitioners with limited analytical capabilities.

Table 2. Optimal Cost and Optimal Number of Scheduled Patients (T � 14)

No-show
Cost structure No walk-in Uni1 Bi1 Uni2 Bi2 Uni3 Bi3

Prob CI CD CW C∗ n∗ C∗ n∗ C∗ n∗ C∗ n∗ C∗ n∗ C∗ n∗ C∗ n∗

0.5 5 15 0.5 21.59 23 24.93 14 25.06 14 28.79 6 29.53 6 47.64 3 43.93 2
0.1 5 15 0.5 7.00 14 19.37 9 19.82 9 26.44 4 27.36 4 45.99 2 42.94 1
0.5 10 15 0.5 30.15 26 32.88 19 33.14 19 36.84 10 36.91 10 45.35 5 44.03 4
0.1 10 15 0.5 11.21 15 24.05 11 24.12 11 32.03 6 32.33 6 42.38 3 42.10 2
0.5 5 25 0.5 23.05 22 27.51 13 27.58 12 33.36 5 35.46 5 68.44 2 62.97 1
0.1 5 25 0.5 7.00 14 22.19 8 22.46 8 31.08 3 33.46 3 67.33 2 61.83 1
0.5 10 25 0.5 35.40 24 40.43 16 40.58 16 45.94 7 47.10 8 68.20 4 64.99 3
0.1 10 25 0.5 13.27 15 31.32 10 31.52 10 41.96 5 42.72 5 65.33 2 63.06 2
0.5 5 15 0.9 21.59 23 29.04 13 29.17 13 34.42 4 34.61 5 60.01 2 53.72 1
0.1 5 15 0.9 7.00 14 23.14 8 23.43 8 31.80 3 32.48 3 58.76 2 52.61 1
0.5 10 15 0.9 30.15 26 40.30 17 40.56 17 45.86 9 45.92 8 59.70 4 55.94 3
0.1 10 15 0.9 11.21 15 29.80 10 30.36 10 40.29 5 41.17 5 56.76 2 53.80 2
0.5 5 25 0.9 23.05 22 31.04 11 31.27 11 38.38 4 39.93 4 80.54 2 72.40 1
0.1 5 25 0.9 7.00 14 25.47 8 25.80 8 35.98 3 37.93 3 79.55 1 71.51 1
0.5 10 25 0.9 35.40 24 46.51 15 46.75 15 53.38 6 54.19 7 81.38 3 75.59 2
0.1 10 25 0.9 13.27 15 35.82 9 36.63 9 48.47 4 49.84 4 78.11 2 74.01 1

Note. C∗ is the cost of the optimal schedule; n∗ represents the optimal number of scheduled patients; walk-in patterns Uni1, Bi1, Uni2, Bi2, Uni3,
and Bi3 are specified in Figure 2.
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However, it should be cautioned that the performance
of this simple rule may not be very robust; in some
cases, the optimality gap can be 30% or larger.

6.4. Case Studies
In this section, we examine the potential performance
improvement by adopting the optimal and heuristic
appointment schedule suggested by our research
to current practice. To parameterize our case study,
we use the same data set as in Section 3. We select
Providers KNI and GAR as cases due to their repre-
sentativeness: These two providers have quite differ-
ent walk-in patterns and no-show rates as discussed
below. For each provider, we sample a number of
days during which he/she works through the whole
clinic session (sometimes the providers may leave
early).

In May 2011, KNI worked from 9 a.m. to 4 p.m.
every Friday, and from 9 a.m. to 1 p.m. every Saturday.
We choose to analyze the morning session on Fridays,
because KNI takes a lunch break at 1 p.m. As this health
center uses half-hour slots, we have eight slots for each
morning session. The average patient no-show rate for
KNI is estimated to be 0.36 based on the data. As for
walk-ins, we use the empirical result in Section 3.3.
Recall that the walk-in pattern of KNI in the morning
is a time-varying zero-inflated Poisson process with a
peak at 10 a.m.

For GAR, we use data of all Fridays from July 1,
2011, to August 5, 2011. During that period, GAR
worked from 9 a.m. to 3 p.m. and did not take a lunch
break. Thus, we reconstruct 6 original schedules, each
with 12 slots. The average no-show rate faced by GAR
is estimated to be 0.16, and thewalk-ins follow a Poisson
process with increasing arrival rates over time.

For each clinic session reconstructed above, we
evaluate the expected wait times of scheduled patients
andwalk-ins, andprovider idle timeandovertimeunder
the observed schedule, those under the schedule sug-
gested by our optimization model, and those under the
heuristic schedule proposed in Section 6.3, based on the
provider-specific data. We then calculate changes
in these different time components of the objective
function if the optimal/heuristic schedule replaces
the observed one. A positive change means that the
optimal/heuristic schedule reduces the correspond-
ing time component in the observed schedule. Table
3 shows the results for provider GAR if the optimal
schedule were adopted (see Tables E15 and E16 of the
online appendix for additional results).
Compared with the observed schedule, the optimal

schedule adjusts different time components in the
objective function according to the cost parameters. In
general, if one particular cost parameter becomes
larger, the optimal schedule leads to more reduction
of the corresponding time component, possibly at the
price of a (slight) increase in other time components.
For instance, if the idling cost rate CI increases, the
optimal schedule seeks to reduce provider idle time,
but may increase other competing time components
in the objective function such as provider overtime.
Although cost parameters (such as patient waiting
cost rate) may not be straightforward to estimate, cost
components in the objective function (such as total
expected patient wait times) are much more tangible.
Thus, information such as that presented in Table 3
can guide the manager to choose a schedule based on
her preferred trade-off among these different time
components—cost parameters become only a tool to
arrive at such schedules.

Table 3. Changes in Objective Function Components by Adopting the Optimal Schedule for Provider GAR
(Change Unit: Slots)

ΔΓS ΔΓW
Cost parameters: (CI , CD, CW )

ΔΓI ΔΓO (5,15,0.5) (5,15,0.9) (5,25,0.5) (5,25,0.9) (10,15,0.5) (10,15,0.9) (10,25,0.5) (10,25,0.9)

7/1/2011 0.00 4.58 0.00 4.85 0.00 6.61 0.00 6.87 0.00 −1.60 0.00 −0.38 0.00 0.95 0.00 1.83
−0.39 1.30 −0.42 1.27 −1.08 1.45 −1.10 1.43 0.77 0.77 0.66 0.66 0.29 1.13 0.25 1.09

7/8/2011 1.98 0.66 1.98 0.93 1.98 2.70 1.98 2.95 1.98 −5.52 1.98 −4.29 1.98 −2.97 1.98 −2.09
0.78 1.62 0.75 1.59 0.08 1.77 0.07 1.76 1.93 1.09 1.83 0.98 1.45 1.45 1.41 1.41

7/15/2011 0.71 −4.13 0.71 −3.86 0.71 −2.10 0.71 −1.84 0.71 −10.31 0.71 −9.09 0.71 −7.77 0.71 −6.89
1.81 0.12 1.78 0.09 1.11 0.27 1.10 0.25 2.96 −0.41 2.86 −0.52 2.48 −0.05 2.44 −0.09

7/22/2011 0.73 6.69 0.73 6.96 0.73 8.73 0.73 8.98 0.73 0.51 0.73 1.74 0.73 3.06 0.73 3.94
−1.23 1.30 −1.26 1.27 −1.93 1.45 −1.94 1.43 -0.08 0.77 −0.18 0.66 −0.56 1.13 −0.60 1.09

7/29/2011 3.08 12.50 3.08 12.77 3.08 14.53 3.08 14.78 3.08 6.32 3.08 7.54 3.08 8.86 3.08 9.74
−0.75 2.62 −0.78 2.60 −1.44 2.77 −1.46 2.76 0.41 2.09 0.30 1.99 −0.07 2.46 −0.11 2.42

8/5/2011 3.33 −1.12 3.33 −0.85 3.33 0.91 3.33 1.16 3.33 −7.30 3.33 −6.08 3.33 −4.76 3.33 −3.88
1.41 2.26 1.39 2.23 0.72 2.41 0.71 2.39 2.57 1.73 2.47 1.62 2.09 2.09 2.05 2.05

Notes. (1) T � 12 and the no-show rate is 0.16. (2) Rows represent clinic sessions in different days and columns for different cost parameter
settings. (3) Each combination of clinic session and cost parameter setting corresponds to four numbers, the upper left being the reduction of
scheduled patients’wait time, the upper right being that of walk-ins’wait time, the lower left being that of provider idle time, and the lower right
being that of provider overtime. (4) The measurement unit is appointment slot.
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Using different cost parameter settings, we also
evaluate the percentage reduction in expected total
daily cost if our optimal/heuristic schedules were
adopted, for each clinic session reconstructed above.
Such a percentage can be viewed as an overall metric
to measure the improvement that may result from
adopting our proposed scheduling approaches to
current practice. We note that, if the optimal sched-
ule was adopted, the potential daily cost savings for
provider KNI ranges from 21% to 93%, and from 10%
to 67% for provider GAR. On average, KNI sees a 73%
cost reduction and GAR 42%. As for the heuristic
schedule, the potential daily cost savings for provider
KNI range from −14% to 92%, and from −10% to 67%
for provider GAR. On average, KNI sees a 64% cost
reduction and GAR 39%. This confirms our earlier
findings on our heuristic rule: It can be a quite use-
ful tool given its simplicity and good performance
overall, but its performance may not be very robust.
(Detailed results can be found in Tables E17 and E18
in the online appendix.)

6.5. Dealing with Insufficient Demand
When patient demand is sufficient, one can fill up the
daily appointment template with n∗ scheduled pa-
tients, where n∗ is the optimal number of scheduled
patients given by our model. In this case, full benefit
of our model is realized. However, if patient demand
is uncertain and insufficient, then the daily ap-
pointment template may not be filled up to optimum.
In this section, we discuss how our model may be
applied in such a situation and its performances.

Given n∗ prescribed by our model, we propose two
simple, online scheduling policies, which assign pa-
tients “on the fly” as their requests for appointments
arrive. We will demonstrate that these two online
policies have very good performances comparedwith
their offline benchmarks. The first policy is called
horizontal scheduling, which assigns patients from
slot 1 throughout T one at a time (if the corresponding
slot has at least one scheduled patient in the optimal
schedule) and repeats if necessary until all patients
have been assigned. The second policy is called
vertical scheduling, which assigns up to x∗t patients to

slot t in the order of t � 1, 2, . . . ,T until all patients
have been assigned (recall that x∗t is the optimal
number of scheduled patients in slot t). For example,
suppose that T � 3 and the optimal schedule is (2,0,1);
if the realized demand is 2, then we will end up with
schedule (1,0,1) by the horizontal policy and (2,0,0) by
the vertical policy.
In our numerical experiments, we set T � 14 and

consider six different walk-in patterns (see Figure 2),
eight different cost parameter combinations, and two
different no-show probabilities (similar to those
considered in Table 2). For each of these parameter
settings, we obtain n∗ (see Table 2), and then we
consider the scenarios in which 1, 2, . . . or n∗ − 1 pa-
tient requests arrive. For each scenario, we calculate
the offline optimal cost—that is, the optimal expected
total daily cost if we had known the number of patient
requests in advance—by adding to the optimization
model such a linear constraint on the total number of
patients to schedule. Such an offline optimum rep-
resents the best performance of any scheduling policy.
We then calculate the percentage gaps between the
offline optimum and the system costs under two online
policies (horizontal and vertical) described above, re-
spectively. These percentage gaps can be viewed as the
optimality gaps of our models applied to situations
where demand is insufficient.
Table 4 summarizes, for each walk-in pattern, the

average, maximum, and median optimality gaps
among all scenarios tested. Both online policies have
comparable performances. In particular, the average
and median optimality gaps of both online policies
are lower than 3%; the maximum optimality gap for
the horizontal policy is no more than 10%. All these
results suggest that our (offline) optimization model
is quite useful, even in an online setting with in-
sufficient demand.

7. Conclusion
In this paper, we study how to schedule patients in a
clinic session during which a random number of walk-
ins may arrive for services. Scheduled patients, how-
ever, may not show up. The objective is to minimize the
expected total cost of patient waiting, provider idling,

Table 4. Optimality Gap of the Appointment-Scheduling Optimization Model Under Insufficient Demand

Walk-in Online No. of
Walk-in rate = 0.3

No. of
Walk-in rate = 0.6

No. of
Walk-in rate = 0.9

pattern policy scenarios AVG MAX MED scenarios AVG MAX MED scenarios AVG MAX MED

Unimodal Horizontal 177 0.7% 7.4% 0.2% 73 1.00% 10.1% 0.0% 22 0.1% 1.7% 0.0%
Vertical 2.6% 14.8% 1.6% 0.1% 2.5% 0.0% 0.1% 0.5% 0.0%

Bimodal Horizontal 175 1.3% 6.8% 0.86% 71 0.9% 5.8% 0.4% 10 0.2% 0.6% 0.0%
Vertical 2.6% 10.8% 2.3% 0.5% 3.7% 0.0% 0.0% 0.0% 0.0%

Notes. (1) T � 14. (2) The optimality gap is calculated by Online Policy Cost−Offline Optimal Cost
Offline Optimal Cost .

Wang, Liu, and Wan: Appointment Scheduling in the Presence of Walk-ins
18 Management Science, Articles in Advance, pp. 1–20, © 2019 INFORMS



and overtime. We formulate the problem as a two-stage
stochastic optimization model and develop effective
solution approaches for various settings. Methodologi-
cally speaking, our model is the first known approach
that can jointly handle general walk-in processes and
heterogeneous, time-dependent patient no-show be-
haviors. Because of this flexibility, our approach can
incorporate almost any finding on these uncertain
patient behaviors based on empirical data, thus pre-
senting great utility for practitioners.

Our research reveals several important managerial
insights. First, with walk-ins, the optimal schedule
has a completely different structure from those identi-
fied in the previous literature, which often does not
consider walk-ins. Intuitively speaking, in anticipation
for walk-ins, some appointment slots need to be pur-
posely left empty.However,due to the complexnatureof
the problem, an optimal schedule is impossible to con-
ceive without resorting to the methods developed in
this paper.

Second, walk-ins introduce a new source of un-
certainties to the system and cannot be viewed as a
simple solution to compensate for patient no-shows.
Scheduling, however, is an effective tool to counter
some of the negative impact due to uncertain patient
behaviors (walk-ins and no-shows). We demonstrate
important practical values of our scheduling approaches,
by using data from practice to show a significant cost
reduction if the providers were to switch from their
current schedules (which tend to overlook walk-ins in
planning) to the schedules suggested by us. Full benefit
of our model can be realized with sufficient demand;
whendemandis insufficient, ourmodel canstill beapplied
in an online fashion and deliver excellent performances
compared with the offline benchmarks.

Last, in addition to optimizing appointment schedules
alone, itmay be useful to exploremeans to influence and
control uncertain patient behaviors (and thus to miti-
gate their potential negative impact). For instance, a less
variable walk-in process may lead to reduction in
overall system cost.

Although our work is motivated by healthcare ap-
plications, our optimization models, numerical results,
and managerial insights can be applied to general
appointment-based services facing random walk-ins.
There are several ways to extend our research. First,
instead of using discrete slots, one may consider a
different modeling approach and decide the sched-
uled arrival time for each patient. In addition, onemay
consider adding a service-level constraint in the for-
mulation to limit patient waits, instead of charging a
waiting cost in the objective. Second, some previous
literature (e.g., Kaandorp and Koole 2007) has con-
sidered exponentially distributed service times in their
scheduling models. Our model can deal with such
random service times, and most results still hold (see

Online Appendix F). But it would be meaningful to
incorporate generally distributed random service times
in the scheduling model. Finally, it may also be of in-
terest to study a decisionmodel that explicitly considers
the endogeneity of walk-ins to the provider’s work
schedule, as discussed earlier. Interesting research
questions include, for instance, how to reduce the
variability in walk-in pattern and whether additional
control policies (like restricting walk-ins during certain
hours) could be beneficial. The model in this paper can
be a tool, combined with behavioral experiments, to
address some of these questions in future research.
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Endnotes
1 In reality, patientsmay arrive anytimewithin a slot. Our assumption
above atmostmisjudges thewait time of awalk-in by half a slot—that
is, 10 minutes or so—and thus will not misinterpret individual pa-
tient’s experience too much.
2One can easily show that scheduling patients into overtime slots can
never be strictly better than not allowing that. Thus, it suffices to only
consider scheduling patients in slot 1 throughT but not beyond, aswe
have done here.
3Constraints on

∑T
t�1

xt, such as an upper bound for it, can be added into

the optimization without influencing the main results in this paper.
4 In Section 4, we note that this priority order is optimal without no-
shows if CW ≤ 1. The same result still holds when no-shows are
present assuming CW ≤ 1.
5U is totally unimodular because any element in U is 0, 1, or −1, and
every row in U has at most two nonzero elements.
6Accessed January 17, 2018, http://www.gurobi.com/products/
features-benefits.
7Our solution approach can solve large-scale problem instances
(e.g., T � 30) to optimality within a reasonable amount of time; see
Table E12 in the online appendix.
8When the walk-in volume is relatively low, we do not observe this
ordering result, possibly due to the fact that in such a case, the vari-
ability in the walk-in process is not significant enough to make a huge
difference between the two.
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