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Abstract We study a problem arising from surgical operations scheduling and model
it as a resource-constrained machine scheduling problem with machine eligibility
restriction to minimize the makespan. By decomposing the problem into two sub-
problems, we develop effective heuristic algorithms to solve the problem. We test the
proposed algorithms on randomly generated instances as well as real data set from
a large hospital. The numerical results show the effectiveness and potential practical
value of the models and the algorithms.

Keywords Healthcare · Surgical operations scheduling · Machine eligibility ·
Resource constraint · Heuristic algorithm

1 Introduction

Many different kinds of resources are needed to treat patients in hospitals. In particular,
operating rooms (ORs), surgeons, anesthesiologists, nurses and expensive surgical
equipment (ESE) are among those expensive and bottleneck resources in hospitals
(Smith-Daniels et al. 1988). Improving the utilization of these resources is always
a critical issue in hospital resource management, and better management of these
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resources may increase the benefits (both tangible and intangible) for hospitals as
well as patients significantly (see, e.g., Stahl et al. 2006; Magerlein and Martin 1978;
Guerriero and Guido 2011; May et al. 2011).

As a kind of bottleneck resources, ORs are very expensive and their number is
limited thus improving their utilization is critical to performance improvement in
hospitals. Previous literature has tackled the OR scheduling problem under differ-
ent settings and using different models and solution methods. For instance, Blake
and Carter (2002) study the long-term or mid-term planning problem for ORs, and
Beliën and Demeulemeester (2008) focus on short-term tactical scheduling of ORs.
In terms of solution methods, researchers (e.g., Jebali et al. 2006; Cardoen et al.
2009) normally build mixed integer linear programming (MILP) models and then
propose various solution methods based on mathematical programming theory (e.g.,
Lagrange relaxation, branch-and-price) or local search (e.g., genetic algorithm or tabu
search).

In practice, there are two types of surgical operations, namely elective surgical oper-
ations and emergency surgical operations. For elective surgical operations, we may
schedule them well in advance, while for emergency surgical operations, we have to
schedule them immediately when patients arrive at the hospitals. Generally speaking,
management either reserve some ORs or some time slots for emergency surgical oper-
ations (van der Lans et al. 2006; Gerchak et al. 1996). For elective surgical operations,
since most information (possibly except the processing times) is known thus a sched-
ule can be constructed before performing the operations. For processing times, some
researchers assume them as deterministic variables (e.g., Pham and Klinkert 2008),
while some other researchers model them as stochastic variables (e.g., Strum et al.
1999).

When surgical operations are preformed,ORs are critical resources.However,many
other resources such as surgeons and equipment are needed in the process thus resource
constraints are widely taken into consideration (e.g., Fei et al. 2010).

In reality, different surgical operations should be performed in different kinds of
ORs thus introducing eligibility restrictions of ORs in scheduling problems. However,
only a few studies takes into consideration of the processing eligibility restrictions
(e.g., Zhao and Li 2014).

In this paper, we study a scheduling problem arising in Shanghai General Hos-
pital, a large comprehensive hospital in Shanghai, China, which has 22 ORs for
in-patients, around 150 surgeons, and almost 500 types of surgical operations in one of
its two branches. In total, around 20,000 elective operations are performed annually.
To increase the utilization of the ORs (and many other resources), it is necessary to
make an optimal schedule of the surgical operations, e.g., minimizing the makespan of
the schedule. Due to many different constraints and restrictions, the problem becomes
rather difficult. For instance, ORs are equipped differently, causing that one type of
surgical operations may only be performed in a set of very specific ORs. Also, vari-
ous resources such as surgeons, nurses, anesthesiologists and special equipment, are
needed to perform a surgical operation, making the problem even more difficult.

In this study, we focus on elective surgical operations scheduling, and employ
machine scheduling theory to solve the problem. We assume deterministic processing
times based on estimations of processing times using statistical methods (e.g., Wright
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et al. 1996; Strum et al. 2000) and there are good approaches to make appointments
for patients under random processing times (e.g., Ge et al. 2014). Machine eligibility
and resource constraints are taken into consideration in this study as well. Although
the integrated model is a good approximation of real surgical OR scheduling, it is very
complicated to solve it via fast exact algorithm. We thus decompose the problem into
two sub-problems and develop effective and efficient algorithms to solve it.

The rest of this paper is organized as follows. In Sect. 2, we describe the problem
and how it can be decomposed into two sub-problems. In Sects. 3 and 4, we analyze
the computational complexity of the problem and develop heuristic algorithms to solve
it. We test performance of the proposed algorithms on both randomly generated data
and real data set in Sect. 5. We conclude with discussion on the future research in
Sect. 6.

2 Problem description and the model

As in the literature, we regard ORs as machines and surgical operations as jobs in
a machine scheduling problem. The objective is to minimize the makespan in order
to increase the utilization of the ORs. Using machine scheduling theory to solve the
surgical operations scheduling problem, Pham and Klinkert (2008) model the problem
as a multi-mode blocking job shop (MMBJS) while Zhong et al. (2014) model the
problem as a multi-machine scheduling problem, regarding ORs, surgeons, nurses,
anesthesiologists and equipment asmultiplemachines for surgical operations. InWang
et al. (2014), they model the daily surgical operations scheduling problem as a two-
stage no-wait hybrid flow-shop problem and propose a searchmethod based on particle
swarm to solve the problem.

As discussed above, there exist various constraints and restrictions on both ORs and
resources for surgical operations. To well model the problem, we make the following
two assumptions.

Assumption 1 (machine eligibility) A surgical operation (a job) j can only be per-
formed (processed) in a specific subset M j ⊆ M, where M denotes the set of all the
ORs (machines).

Assumption 2 (unit resource requirement) There are λ types of different resources,
and there is only one unit in each type of resources. Each job needs only one unit of
resources for its processing.

Assumption 1 is used to model the eligibility of ORs (machine eligibility) and
Assumption 2 is used to model the situation where only the most critical resource
matters in the surgical operations. Notice that in a hospital, usually surgeons, nurses
and anesthesiologists work as surgical teams, thus it can be regarded as unit resources.

Using three-field notation in scheduling theory (Pinedo 2012), the problem can be
denoted as P|M j , Res λ 11|Cmax , and the problem can be stated as follows.

There are n jobs (surgical operations) {J1, J2, . . . , Jn} to be processed onm parallel
machines (ORs) {M1, M2, . . . , Mm} and job J j can only be processed in a subset
of the machines M j (machine eligibility restrictions). We use an eligibility matrix
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An×m to represent these restrictions: if job J j can be processed on Mi then A( j, i) =
1; otherwise A( j, i) = 0. The symbol Res λ 11 denotes that there are λ types of
resources with each type having only one unit, and it needs only one unit of resources
for processing a job. The objective is to minimize Cmax , the time when all jobs are
completed.

The problem P|M j , Res λ 11|Cmax is obviously NP-hard since many problems
such as P||Cmax are its special cases, and with resource constraints and machine
eligibility restrictions, it is not expected to find a fast algorithm to solve it to opti-
mality. Hence, we decompose it into two sub-problems, namely, job assignment
(to the parallel machines) and job sequencing. Decomposition is a strategy widely
adopted in surgical operations scheduling (see, for instance, Guinet and Chaabane
2003; Jebali et al. 2006; Testi et al. 2007; Fei et al. 2010; Zhao and Li 2014; Zhong et al.
2014). The method is also consistent with the practices in many hospitals although
an integrated solution approach is more desirable. In this study, we first determine
the assignment of the jobs to eligible machines, and then sequence the jobs (which
have been assigned to specific machines) taking into consideration of the resource
constraints.

2.1 Assignment

In the assignment problem, we decide which jobs should be processed on which
machine. The sequences of jobs are not the concern here but the machine eligibil-
ity should be dealt with. Machine eligibility restriction is well studied in the machine
scheduling literature but little literature on surgical operations scheduling is concerned
with it. In machine scheduling literature, Glass et al. (2007) and Ou et al. (2008) study
the worst-case performance of strongly polynomial-time approximation algorithms
for nested machine eligibility and inclusive machine eligibility, respectively. For gen-
eral machine eligibility, Shchepin and Vakhania (2005) propose a 2-approximation
polynomial-time algorithm, and Vairaktarakis and Cai (2003) examine several heuris-
tic rules. Notice that few studies consider resource constraints simultaneously, which
are important aspects of the current problem. There are several important features in
this study:

– Although the resources can be shared among different machines (ORs), it is costly
to move the resources from one machine to another machine.

– Centralizing the use of resources can lower the difficulty of sequencing jobs in the
second stage.

Hence, it is a good strategy to assign jobs requiring the same resources on the same
machine. This means each machine should use as few types of resources as possible.
To clearly describe the problem, we introduce the notation Ri , the set of resources
that machine Mi uses. Then, the assignment problem becomes a bicriteria scheduling
problem with machine eligibility to minimize both the makespan and the maximum
resource usage by one machine, denoted as P|M j |(Cmax , Rmax ), where Ri is the set
of used resources by machine Mi , and Rmax = maxi |Ri |.
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2.2 Sequencing

Before sequencing the jobs, it is necessary to resolve the conflicts of resources require-
ments. In hospitals, there are many good practices when scheduling the surgical
operations as can be summarized as follows.

– The aseptic surgical operations need to be scheduledbefore the non-aseptic surgical
operations;

– High-priority patients need to be scheduled before normal patients;
– Surgical operations with general anesthesia need to be scheduled before surgical
operations with local anesthesia;

– Surgical operations with easily estimated durations need to be scheduled before
surgical operations whose durations are hard to estimate;

– Surgeons’ preferences are important.

The above practices are discussed in Zhang et al. (2014). Also, Min and Yih (2010)
consider the patient priority, and preference of surgeons are considered in Meskens
et al. 2013 and Cardoen et al. 2009. In the current problem, we regard all of these
practices as constraints. For simplicity, we make the following assumption.

Assumption 3 (partial pre-determined sequence) A partial sequence of jobs using
the same type of resources can be pre-determined and remains unchanged in the later
stage.

Although some pre-determined sequences can be changed in reality, the idea of
introducing these practices in the problem is important for solving the problem.
In fact, by this assumption, the resource constraint Res λ 11 can be replaced by
pre-determined partial sequences which formulate λ chains. Hence the sequencing
problem can be transformed into a dedicated machine scheduling with chain con-
straints, i.e., PD|Chains|Cmax , where PD represents dedicated parallel machines
since the assignment has been decided already, and Chains represent the partial
sequences of jobs using the same resources, and each resource decides a chain of
jobs using it.

2.3 MILP model

Before developing solution approach to the scheduling problem, we now describe an
MILP model for the problem to help understand the complexity of the problem, and
for potential base of search procedure. The notations are listed in Table 1.

Then the MILP model for P|M j ,Chain|Cmax can be formulated as follows.

min Cmax (1a)

s.t.
m∑

i=1

y j,i = 1 f or j = 1, . . . , n (1b)

y j,i ≤ A j,i f or j = 1, . . . , n

i = 1, . . . ,m (1c)
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Table 1 Notation
Notation Explanation

Parameters

m Number of machines (ORs)

n Number of jobs (surgical operations)

λ Number of chains (resources)

Mi Machine i

J j Job j

M j Set of machines which can process job j

A j,i If job j can be processed in machine i , then it equals
to 1; otherwise it equals to 0

p j Processing time of job j

c( j) The chain where job j is

seq j,k If c( j) = c(k) and job j is pre-determined before k,
then it equals to 1; otherwise it equals to 0

M A big number M

Decision variables

x j,k if job j is sequenced before k, then it equals to 1;
otherwise it equals to 0

y j,i If job j is assigned to machine i , then it equals to 1;
otherwise it equals to 0

s j Starting time of job j

Cmax Makespan

x j,k + xk, j = 1 f or j = 1, . . . , n

k = 1, . . . , n

j �= k (1d)

x j,k = seq j,k f or j = 1, . . . , n

k = 1, . . . , n

c( j) = c(k) (1e)

s j ≥ seqk, j (sk + pk) f or k = 1, . . . , n

j = 1, . . . , n

c( j) = c(k) (1f)

M(2 + xk, j − yk,i − y j,i ) + sk ≥ p j + s j f or j = 1, . . . , n

k = 1, . . . , n

i = 1, . . . ,m

k �= j (1g)

Cmax ≥ s j + p j f or j = 1, . . . , n (1h)

x j,k, y j,i ∈ {0, 1} f or j = 1, . . . , n

k = 1, . . . , n

i = 1, . . . ,m (1i)
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s j ≥ 0 f or j = 1, . . . , n (1j)

Objective (1a) is the objective function of minimizing the makespan, which is larger
than or equal to the completion time of all jobs in constraint (1h). Constraint (1b)
makes sure that every job is assigned to one machine. Machine eligibility constraint
is embodied in constraint (1c). Constraint (1d) guarantees either J j is before Jk or Jk
is before J j . Constraint (1e) ensures partial predetermined sequences should not be
changed. For two jobs in same chain or same machine, the starting time of the later
one will not be earlier than the finishing time of the former one, which are guaranteed
in constraint (1f) and (1g), respectively. Constraint (1i) and (1j) define the allowed
values for decision variables.

Obviously the model does not allow for an efficient algorithm to solve it to opti-
mality, thus we turn to the decomposition strategy for solving the problem.

3 The problem P|M j |(Cmax, Rmax)

It is well known that P||Cmax is NP-hard (see, e.g., Pinedo 2012), and the current
problem ismuchmore difficult than it because of the eligibility constraints and resource
usage objective.

Vairaktarakis and Cai (2003) study several heuristic rules for P|M j |Cmax , and they
claim lowest average workload (LAW) has the best performance. The basic idea for
LAW is to choose a machine with the lowest average workload first and then choose
a job with the largest processing time to process on the chosen machine.

As an extension, we propose a modified LAW (MLAW) by taking resource usage
into consideration. A machine is still chosen by the lowest average workload, while a
job with the largest modified processing time is chosen. The modified processing time
becomes much smaller if the job needs a resource which has not been used before
by the chosen machine. This modification makes the resource usage by each machine
smaller while still keeps the makespan. To describe the algorithms, we supplement
new notations in Table 2.

We define the average workload of Mi as the summation of the assigned workload
and the expected workload as follows:

Table 2 New notations for
assignment

Notation Explanation

Parameters

Bi Set of available unassigned jobs for machine i

Ri Set of used resources by machine i

UR Set of used resources by all machines

mp j Modified processing time of job j

Wi Expected workload of machine i

ti Available time (assigned workload) of machine i

Decision variable

m( j) Index of machine that has been assigned to job j
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workloadi := ti +
∑

J j∈Bi

p j

|M j |

and the modified processing time of J j as follows:

mp j :=

⎧
⎪⎪⎨

⎪⎪⎩

p j c( j) ∈ Ri
p j(

1 + |Bi | ∗ |Ri |
|UR|

) c( j) /∈ Ri

When a job J j requires a resource which has not been used by the chosen machine
before, its modified processing time decreases with the number of used resources by
the chosen machine and the available unassigned jobs of the chosen machine, but
increases with the number of total used resources by all machines. It is easy to know
that the more used resources of the chosen machine are, the worse the performance is.
As to the other two aspects, the more unassigned jobs are, the more expected usage
of resources by the chosen machine is; and the less total used resources is, the more
unused resources are. These three reasons make job J j less likely to be chosen. Based
on these intuitions, we propose the following algorithm.

Algorithm MLAW

– Step 0: Set: Bi := {J j : A j,i = 1}, Wi := ∑
J j∈Bi

p j

|M j | , ti := 0;

– Step 1: Find Mi0 such that Bi0 �= � and (ti0 + Wi0) = minmi=1(ti + Wi );
– Step 2: Calculate mp j , and find J j0 such that mp j0 = maxnj=1{mp j };
– Step 3: Let m( j0) := i0, ti0 := ti0 + p j0 ; Ri0 := Ri0 + {c( j0)}, UR := UR +

{c( j0)};
– Step 4: For Mi ∈ M j0 , set : Wi := Wi − p j0

|M j0 |
,Bi := Bi − {J j0}; Go to Step 1

till
⋃m

i=1 Bi = �.

In the algorithm, Step 0 initializes the unassigned job set and expected workload of
each machine. Step 1 chooses a machine with smallest total average workload; Step 2
chooses a job with largest modified processing time; Step 3 completes the assignment
and changes the set of used resources by the chosen machine and the set of total
used resources by all machines; Step 4 changes sets of unassigned jobs and expected
workloads of machines which can process the chosen job. Repeat Steps 1–4 until that
all jobs are assigned. It is easy to see that MLAW algorithm takes O(n2 log n) time to
complete the job assignment.

4 The problem P D|Chains|Cmax

4.1 Computational complexity

We now face a scheduling problem with dedicated parallel machines since the assign-
ment has been decided on the job assignment. Furthermore, partial sequences have
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Table 3 New notations for
sequencing

Notation Explanation

pre( j) Direct predecessor of job J j (is null if job J j is the
first job in a chain)

suc( j) Direct successor of job J j (is null if job J j is the
last job in a chain)

Cl Set of jobs in chain l

r j Earliest starting time of job J j , it is determined by
followed jobs by J j

q j Shortest remaining time of job J j , it is determined
by following jobs of J j

A Set of current available jobs

been determined, which form job chains. Hence, the left task is to decide the sequences
of unsequenced jobs and the problem becomes PD|Chains|Cmax . Its computational
complexity is unknown but in fact, PD|Chains|Cmax can be transformed to a classic
job shop problem J ||Cmax if we regard an entire chain as a job and jobs in a chain
as tasks. J ||Cmax is a strongly NP-hard problem (Pinedo 2012), thus we know that
PD|Chains|Cmax is also NP-hard in strong sense.

4.2 Heuristic algorithm

The algorithms for J ||Cmax can be used to solve the problem PD|Chains|Cmax .
However, if Assumption 3 does not hold, the sequencing problem is not a job shop
problem anymore and these algorithms are of little value for solving the related
problem.

To design an algorithm which can be extended to deal with other related problems,
we reduce the problem 1|r j |Lmax to our problem. In fact, Jackson’s rule works well
as a heuristic algorithm for 1|r j |Lmax (Pinedo 2012). Following this idea, we propose
longest remaining chain (LRC) rule for solving the problem PD|Chains|Cmax . The
idea is, each time, from all jobs which are available for processing, to choose a job
whose following jobs have the largest total processing time. New notations for LRC
are supplemented in Table 3.

Algorithm LRC

– Step 0: Set: t := ti := 0, r j := rpre( j) + ppre( j), q j := qsuc( j) + psuc( j),
Bi := {J j : m( j) = i}, and Cl := {J j : c( j) = l};

– Step 1: A := {J j : r j ≤ tand J j ∈ ⋃m
i=1 Bi }; Find J j0 such that p j0 =

maxJ j∈A{p j : q j = maxJk∈A{qk}};
– Step 2: s j0 := max{tm( j0), r j0}, tm( j0) := s j0 + p j0Bm( j0) := Bm( j0) − {J j0},
Cc( j0) := Cc( j0) − {J j0};

– Step 3: If s j0 > r j0 , then for J j ∈ Cc( j0) : r j := r j + s j0 − r j0 ;
– Step 4: Find t := minmi=1{max{ti , min j∈Bi {r j }}}; Go to Step 1 till

⋃m
i=1 Bi = �.

In the algorithm, Step 0 initializes the current time, machines’ available times, jobs’
earliest starting times and shortest remaining times, and set of undone jobs for each
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machine and each resource. Step 1 finds a job from current available jobs with largest
shortest remaining time (tie broken by picking the one with largest processing time).
Step 2 sets the starting time for the selected job, changes the available time for the
corresponding machine, and deletes the selected job from the undone job sets. Steps
3 and 4 modifies the earliest starting times for undone jobs and current time. Repeat
Steps 1–4 till all jobs are processed. It is easy to see that Algorithm LRC takes O(n2)
time to complete the sequencing process.

Notice that the basic idea of Algorithm LRC is to pick a job with largest shortest
remaining time from jobs which can be started now, thus it can also be used for the
case where Assumption 3 does not hold.

5 Performance evaluation

5.1 Randomly generated data

To evaluate the performance of the proposed algorithms for the whole problem, we
generate 49 data groups with size 10. These groups of data vary in machine num-
ber, job number, resource number and processing times. Processing times, eligibility
matrix and partial sequences are generated randomly. In Table 4, we show the average
performance gap (APG) and worst performance gap (WPG) between our solutions
and the optimal solutions for the 49 groups of data. The APGs of all the groups are
good with their values being mostly between 0.1 and 0.2, although the WPGs may be
up to more than 0.5. The total average performance gap for all data is 0.1246, a very
impressive result1, where: m is the number of machines, n is the number of jobs, λ is
number of resources, and p is the average processing time.

An interesting observation is that, with fixed job number and average process-
ing time, the decomposition algorithms have better performance for the case with
a few machines and a few resources. We define the tightness for the two things,
the less machines and resources, the higher tightness. Figure 1a shows the impact
of tightness on performance of our decomposition algorithms (tightness of group
with m = 4 and λ = 8 is normalized to be 1). From Fig. 1b, we cannot
find out how problem scale effects performance of our algorithms, but longer
average processing time makes performance more stable. The problem scale is
defined in such a way that, for fixed tightness, the more jobs the larger scale
(problem scale of group with n = 20, m = 5 and λ = 10 is normalized to
be 1). Figure 1c–f show the different performance with different the number of
machines, the number of jobs, the number of resources and the average processing
time, respectively. It is not obvious how these parameters effect the performance

1 The performance measure is calculated by

(
(Value of the Algori thm)

(Optimal Value)
− 1

)
. However, getting opti-

mal values for some instances are too time-consuming, hence for such data groupsweuse near optimal values

with 8% relative gap. We then use

(
(Value of the Algori thm) ∗ 1.08

(Near Optimal Value)
− 1

)
to calculate the APG/WPG.

The APG/WPG of the data groups with mark * are calculated in this way in Table 4.
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Table 4 Gap summary

m n λ p APG WPG m n λ p APG WPG

16 4 8 5 0.1070 0.3182 16 4 8 10 0.0507 0.2037

16 4 8 25 0.0726 0.2045 16 4 8 50 0.1491 0.2490

16 4 8 100 0.1557 0.4202 18 5 12 5 0.0936 0.2667

18 5 12 10 0.1227 0.2857 18 5 12 25 0.1530 0.3689

18 5 12 50 0.1100 0.3405 18 5 12 100 0.0798 0.2260

20 3 6 10 0.1009 0.2727 20 3 6 100 0.1062 0.3017

20 4 8 10 0.1353 0.2813 20 4 8 100 0.1651 0.3314

20 5 10 10 0.1566 0.3276 20 5 10 100 0.1726 0.2988

20 6 12 10 0.1234 0.1887 20 6 12 100 0.1245 0.5066

24 6 12 10 0.1809 0.2909 24 6 12 100 0.1441 0.3718

26 4 8 10 0.1610 0.3411* 26 4 8 100 0.1442 0.2923*

30 3 6 10 0.1481 0.1904* 30 3 6 100 0.1715 0.2246*

30 4 8 10 0.1439 0.3114* 30 4 8 100 0.1678 0.5361*

30 5 10 10 0.1596 0.3957* 30 5 10 100 0.1464 0.2921*

30 6 12 10 0.1086 0.2697* 30 6 12 100 0.1104 0.3438*

40 10 20 10 0.0870 0.3333 40 10 20 100 0.1594 0.3824

80 20 40 10 0.1312 0.3688* 80 20 40 100 0.1418 0.2913*

20 2 8 10 0.08 0.08* 20 3 8 10 0.1479 0.2825*

20 5 8 10 0.1449 0.2778 20 6 8 10 0.1689 0.3488

20 2 4 10 0.0410 0.0745 20 3 4 10 0.1402 0.2195

20 4 4 10 0.1296 0.4127 20 5 4 10 0.0872 0.1276

20 6 4 10 0.0800 0.1728 20 2 6 10 0.0297 0.1631

20 2 10 10 0.08 0.08* 20 2 12 10 0.08 0.08*

20 4 6 10 0.1998 0.3088 20 4 10 10 0.1176 0.3333

20 4 12 10 0.0906 0.1323*

based on only these results thus it needs more computational experiments in the
future.

5.2 Real data set

We now use real data set to test our decomposition algorithms. In north branch of
Shanghai General Hospital, there are 22 operating rooms and 154 surgeons in in-
patient department. Surgeons in this comprehensive hospital can perform 497 different
kinds of surgical operations.We collect the historical data from January 1, 2014 to July
1, 2014. During the 6months, this branch performed a total of 9699 in-patient elective
surgical operations. After data cleaning, there are 9148 available data. In working
days, around 80 sets of operations were performed per day; in weekends or holidays,
there were at most 20 operations being performed per day. After adding the eligibility
constraint and using the realized partial sequences for the same surgeon, we implement
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Fig. 1 a Effect of tightness. b Effect of scale. c Effect of machine number. d Effect of job number. e Effect
of resource number. f Effect of processing time.

our decomposition algorithms with the historical data. The result shows an average
improvement of 21.38% for working days, and average improvement of 61.94% for
holidays, compared with the real makespan.

6 Conclusion

We study a surgical operations scheduling problem arising in hospitals. Usingmachine
scheduling theory, we model it as a resource-constrained scheduling with machine eli-
gibility restriction to minimize the makespan, i.e., P|M j , Res λ 11|Cmax . Due to the
computational complexity of the problem, we decompose it into two sub-problems.
The first sub-problem is the assignment problem, modeled as a bicriteria scheduling
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with machine eligibility to minimize both makespan and maximum resource usage
by one machine P|M j |(Cmax , Rmax ). We propose a modify LAW rule to handle the
second objective Rmax . The second sub-problem is a sequencing problem, modeled
as a dedicated machine scheduling problem with chain constraint PD|Chains|Cmax .
We show that this problem is NP-hard in strong sense, and develop LRC algorithm
to solve it. We demonstrate the effectiveness of the proposed algorithms by compu-
tational experiments. The results show that the average performance gap is 0.1246,
an impressive result. By testing with real data set in Shanghai General Hospital, our
algorithms achieve 21.38% improvement for working days, and 61.94% improvement
for holidays.

For future research along this vein, we may conduct more thorough experiments
to test the algorithms and implement the algorithms in decision support systems, or
consider more practical constraints for the surgical operations scheduling problem.
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